Assoc. Prof. Dr. Zied Hajej | Engineering | Research Excellence Award

Assoc. Prof. Dr. Zied Hajej | Engineering | Research Excellence Award

Associate Professor | University of Lorraine | France

Assoc. Prof. Dr. Zied Hajej is an internationally recognized academic and researcher whose work is firmly positioned at the core of Engineering, with sustained contributions across industrial Engineering, systems Engineering, computational Engineering, and decision oriented Engineering frameworks. His expertise integrates Engineering optimization, Engineering analytics, Engineering intelligence, and Engineering driven modeling to address complex production, maintenance, logistics, and reliability challenges. He has authored and co authored more than thirty peer reviewed journal articles, numerous international conference papers, books, and software solutions, reflecting a strong Engineering research portfolio with high global visibility. His Engineering research emphasizes integrated production and maintenance Engineering, sustainable Engineering systems, renewable energy Engineering, and data driven Engineering strategies supported by artificial intelligence and machine learning. He maintains active Engineering collaborations with leading international universities, research laboratories, and industrial partners, strengthening interdisciplinary Engineering innovation and knowledge transfer. His Engineering contributions have influenced industrial practices, improved system reliability, and supported sustainable societal outcomes through efficient Engineering solutions. Google Scholar profile of 1083 Citations, 18 h index, 32 i10 index.

Citation Metrics (Google Scholar)

1083
900
700
500
300
0

Citations

1083

h-index

18

i10 index

32

Citations

h-index

i10 index

Featured Publications

Dr. Liping Gong | Mechanical engineering | Best Researcher Award

Dr. Liping Gong | Mechanical engineering | Best Researcher Award

Associate Research Fellow | University of Wollongong | Australia

Dr. Liping Gong is a distinguished researcher in the field of mechanical engineering, demonstrating exceptional expertise in advanced materials, vibration control, and energy harvesting systems. He earned his Doctor of Philosophy in mechanical engineering from the University of Wollongong, Australia, where his work received the Examiners’ Commendation for Outstanding Thesis. His academic foundation in mechanical engineering was strengthened by a Bachelor’s degree in Engineering Mechanics from Chang’an University, China. As a Postdoctoral Research Fellow, he has made significant strides in developing shear-stiffening phononic crystals through stereolithography for vibration and acoustic applications, alongside mentoring students in material characterization and finite element modeling—core skills in mechanical engineering research. His contributions span the design of magnetorheological elastomers, liquid metal-based nanogenerators, and intelligent materials for energy harvesting, reflecting innovation across various mechanical engineering domains. Dr. Gong’s research in mechanical engineering has been published in top-tier journals such as Advanced Materials, Nano Energy, and Smart Materials and Structures. His dedication has been recognized with the Best Oral Presentation Award at international mechanical engineering conferences. His research skills encompass experimental design, data analysis, material fabrication, and computational modeling—crucial aspects of mechanical engineering advancement. With deep involvement in reviewing for international journals, Dr. Gong continues to contribute to global mechanical engineering excellence. His professional journey highlights a commitment to innovation, interdisciplinary collaboration, and scientific impact within mechanical engineering.Google Scholar profile of 301 Citations, 7 h-index, 7 i10-index.

Profile: Google Scholar

Featured Publications

1. Wang, S., Gong, L., Shang, Z., Ding, L., Yin, G., Jiang, W., Gong, X., & Xuan, S. (2018). Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures. Advanced Functional Materials, 28(18), 1707538.

2. Zhang, Q., Lu, H., Yun, G., Gong, L., Chen, Z., Jin, S., Du, H., Jiang, Z., & Li, W. (2024). A laminated gravity‐driven liquid metal‐doped hydrogel of unparalleled toughness and conductivity. Advanced Functional Materials, 34(31), 2308113.

3. Wu, H., Gong, N., Yang, J., Gong, L., Li, W., & Sun, S. (2024). Investigation of a semi-active suspension system for high-speed trains based on magnetorheological isolator with negative stiffness characteristics. Mechanical Systems and Signal Processing, 208, 111085.

4. Gong, L., Xuan, T., Wang, S., Du, H., & Li, W. (2023). Liquid metal based triboelectric nanogenerator with excellent electrothermal and safeguarding performance towards intelligent plaster. Nano Energy, 109, 108280.

5. Jin, S., Yang, J., Sun, S., Deng, L., Chen, Z., Gong, L., Du, H., & Li, W. (2023). Magnetorheological elastomer base isolation in civil engineering: a review. Journal of Infrastructure Intelligence and Resilience, 2(2), 100039.

Mr. Patrick Keane | Geopolymer Composites | Best Researcher Award

Mr. Patrick Keane | Geopolymer Composites | Best Researcher Award

Mr. Patrick Keane, University of South Australia, Australia

Patrick Keane is a Research Associate at the Future Industries Institute, University of South Australia. His work involves developing and testing thermal energy storage systems for extreme temperatures and teaching engineering courses. Patrick holds a Doctor of Philosophy in Energy and Advanced Manufacturing from the University of South Australia and a Bachelor of Science in Nuclear Plasma & Radiological Engineering from the University of Illinois at Urbana-Champaign. His previous roles include research on high-temperature materials, 3D printing, and chemical synthesis. He has received multiple accolades for his research and has a background in cello performance.

PROFILE

Orcid

Education

Patrick Keane is pursuing a Doctor of Philosophy in Energy and Advanced Manufacturing at the Future Industries Institute, University of South Australia, specializing in thermal energy storage systems. His research focuses on “Amorphous Self-Healing Geopolymer Composites for Molten Salt Containment,” with an expected conferral in September 2024. He holds a Bachelor of Science in Nuclear Plasma & Radiological Engineering from the University of Illinois at Urbana-Champaign, where he specialized in Power, Safety, and the Environment and also completed an undergraduate minor in Material Science and Engineering with a focus on Ceramics. Additionally, he earned a two-year Associates Diploma in Engineering Science with a specialization in Chemical Engineering from Parkland College, Champaign, Illinois, in December 2018.

Professional Experience

Patrick Keane is a Research Associate at the Future Industries Institute, University of South Australia, where he designs and tests advanced thermal energy storage systems and lectures on mechanical engineering courses. His research focuses on materials for extreme temperature applications, including low and high-temperature systems utilizing brines, molten salts, and refractories. Prior to this, he served as a Research Assistant at the same institute, working on high-temperature materials, thermal energy storage, and testing the efficacy of surgical facemasks. He also has experience as a consultant for the Australian Alliance for Energy Productivity, where he analyzed energy usage in agriculture, and as a 3D printer specialist at Arris Pty Ltd, fabricating prototype tunneling systems. Keane’s earlier roles include a Research Fellow at the US Army Corps of Engineers, where he worked on 3D printable concrete and trained military personnel, and a Chemical Technician at KeaneTech LLC, focusing on geopolymer composites and metal oxide powders. His academic background includes a Ph.D. in Energy and Advanced Manufacturing from the University of South Australia and a B.Sc. in Nuclear Plasma & Radiological Engineering from the University of Illinois at Urbana-Champaign.

Awards Achievements

Patrick Keane has received notable recognition and achievements throughout his career. He was awarded the US Army Corps of Engineers Challenge Coin for excellence at the Maneuver Support, Sustainment, Protection, Integration Experiment 2018 in Fort Leonard Wood. In January 2018, he attended a specialized short course on Mechanical Properties at the 42nd International Conference and Expo on Advanced Ceramics and Composites in Daytona Beach, FL. As an Oak Ridge Institute for Science and Education Fellow in 2016, Keane furthered his research capabilities. He was certified through a 10-day workshop by the Swedish Nuclear Fuel and Waste Management Company in June 2014. Additionally, he was selected as one of two high school students from Illinois to attend the Society of American Military Engineers Camp at the United States Air Force Academy in 2007. His contributions to scientific literature include photographs of basalt fibers used as the front cover of Volume 104, Issue 7 of the Journal of the American Ceramic Society (2021) and images of amorphous self-healed geopolymer composites featured on the front cover of Volume 18, Issue 4 of the International Journal of Applied Ceramic Technology (2021). Keane also won first place for best student presentation at the Alkali Activated Materials and Geopolymers ECI Conference in 2023. Beyond his professional achievements, he studied cello for 20 years at the Young Artists

Top Notable Publications

Regional Metakaolin Particle Size Reduction for Higher Strength Geopolymer

International Journal of Applied Ceramic Technology

September 2024

DOI: 10.1111/ijac.14766

Compositional Effects in Potassium Metakaolin Geopolymers Containing Alumina and Glass Frit

Ceramics International

August 2024

DOI: 10.1016/j.ceramint.2024.08.242

Discharge Performance of a High Temperature Phase Change Material with Low-Cost Wire Mesh

Applied Thermal Engineering

March 2023

DOI: 10.1016/j.applthermaleng.2023.120050

Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride

Applied Sciences

February 2023

DOI: 10.3390/app13042615

A Review Paper on the Extraction of Potassium from Non-Soluble Resources with the Use of Acid and Alkaline Solution and Molten Salts

Minerals Engineering

2023

DOI: 10.1016/j.mineng.2023.108365

Self-Healing Glass/Metakaolin-Based Geopolymer Composite Exposed to Molten Sodium Chloride and Potassium Chloride

Forschungzentrum Jülich

2023

DOI: 10.34734/fzj-2024-02895

Microstructural Evolution of Amorphous Self-Healing Geopolymer Composites Containing Alumina and Glass Frit

International Journal of Ceramic Engineering & Science

September 2022

DOI: 10.1002/ces2.10154

Lateritic Soil Geopolymer Composites for Ceramics and Engineering Construction Applications

International Journal of Applied Ceramic Technology

March 2022

DOI: 10.1111/ijac.14046

Experimental and Numerical Analysis for the Discharge Performance of a High Temperature Phase Change Material with Low-Cost Wire Mesh

SSRN

2022

EID: 2-s2.0-85128656186

Acid Resistance of Metakaolin-Based, Bamboo Fiber Geopolymer Composites

Construction and Building Materials

October 2021

DOI: 10.1016/j.conbuildmat.2021.124194

Amorphous Self-Healed, Chopped Basalt Fiber-Reinforced, Geopolymer Composites

Journal of the American Ceramic Society

February 2021

DOI: 10.1111/jace.17648