Prof. Elvira Rossi | High Energy Physics | Research Excellence Award

Prof. Elvira Rossi | High Energy Physics | Research Excellence Award

Associate Professor in Particle Physics | University of Naples Federico II | Italy

Prof. Elvira Rossi is a leading experimental scientist whose contributions have significantly advanced global High Energy Physics through pioneering research, interdisciplinary collaborations, and influential work within major international laboratories. Her research spans fundamental interactions, precision measurements, detector technologies, artificial intelligence applications, and large-scale data analysis, reinforcing the core pillars of modern High Energy Physics. She has played a major role in collaborations dedicated to High Energy Physics, including long-standing involvement in ATLAS and activities connected to future collider programs, where her work supports advancements in particle detection, trigger systems, calibration studies, and complex reconstruction strategies. Her scientific output reflects deep engagement with High Energy Physics, with impactful publications, extensive citation influence, and a strong presence across collaborative research networks. She has contributed to major discoveries, precision analyses, high-performance computing initiatives, and methodological innovations that benefit the broader High Energy Physics community and society through technological transfer, scientific outreach, and the development of advanced computational frameworks. Her sustained commitment to High Energy Physics, combined with her leadership roles and contributions to detector development and data-driven analysis, highlights her as a prominent figure shaping the future directions of High Energy Physics at the global level. Professional research metrics Scopus profile of 70403 Citations, 1211 Documents, 126 h-index.

Citation Metrics (Scopus)

80000
60000
40000
20000
0

70,403
Citations

1,211
Documents

126
h-index

                                       ■ Citations (Blue)           ■ Documents (Red)            ■ h-index (Green)

Featured Publications

Kai-Li Wang | Physics and Astronomy | Young Scientist Award

Mr. Kai-Li Wang | Physics and Astronomy | Young Scientist Award

Postdoctoral Researcher | Soochow University | China

Mr. Kai-Li Wang is a leading researcher whose contributions in Physics and Astronomy have positioned him at the forefront of advanced semiconductor and perovskite device innovation. His work demonstrates a strong command of Physics and Astronomy, especially in areas related to organic and perovskite semiconductor mechanisms, device engineering, and photophysical behavior crucial to next-generation energy technologies. Across more than eighty publications, his research in Physics and Astronomy consistently advances fundamental understanding while delivering high-impact practical outcomes for photovoltaic and optoelectronic systems. His publications in major journals such as Science, JACS, Advanced Materials, Advanced Energy Materials, and Nano Letters reflect exceptional influence within global Physics and Astronomy communities. Mr. Kai-Li Wang’s expertise integrates material design, vacuum-based fabrication strategies, tandem and indoor photovoltaics, and defect passivation concepts technical areas rooted deeply in Physics and Astronomy. Through multidisciplinary collaborations bridging chemistry, nanotechnology, and device engineering, he elevates the role of Physics and Astronomy in solving large-scale energy and sustainability challenges. His work has reshaped modern understanding of perovskite crystallization, interface engineering, charge-transfer pathways, and stability mechanisms, making him a consistent contributor to international advancements in Physics and Astronomy. As a co-inventor on multiple patents and a frequent collaborator with highly cited research groups, Mr. Kai-Li Wang exemplifies the societal value of Physics and Astronomy through innovations aimed at high-efficiency, low-cost, and environmentally responsible energy conversion. His research continues to influence experimental design and industrial translation across the expanding global fields of photovoltaics, semiconductor materials, and applied Physics and Astronomy, reinforcing the discipline’s vital impact on technological progress. Google Scholar profile of 6389 Citations, 39 h-index, 94 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Wang, R., Xue, J., Wang, K. L., Wang, Z. K., Luo, Y., Fenning, D., Xu, G., Nuryyeva, S., … (2019). Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366(6472), 1509–1513.

2. Igbari, F., Wang, R., Wang, Z. K., Ma, X. J., Wang, Q., Wang, K. L., Zhang, Y., Liao, L. S., … (2019). Composition stoichiometry of Cs₂AgBiBr₆ films for highly efficient lead-free perovskite solar cells. Nano Letters, 19(3), 2066–2073.

3. Xue, J., Wang, R., Chen, X., Yao, C., Jin, X., Wang, K. L., Huang, W., Huang, T., … (2021). Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 371(6529), 636–640.

4. Xue, J., Wang, R., Wang, K. L., Wang, Z. K., Yavuz, I., Wang, Y., Yang, Y., Gao, X., … (2019). Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. Journal of the American Chemical Society, 141(35), 13948–13953.

5. Phung, N., Félix, R., Meggiolaro, D., Al-Ashouri, A., Sousa e Silva, G., … (2020). The doping mechanism of halide perovskite unveiled by alkaline earth metals. Journal of the American Chemical Society, 142(5), 2364–2374.

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Post-Doctoral Researcher | University of Geneva | Switzerland

Dr. Atangana Likéné André Aimé is a distinguished researcher in High Energy Physics with expertise spanning Nuclear Physics, Particle Physics, and Radiation Protection. His academic background, marked by advanced degrees in Physics, reflects a strong foundation in theoretical and applied High Energy Physics. Professionally, he has served as a Research Officer at the Research Center of Nuclear Science and Technology, a Lecturer at the University of Yaoundé I, and a Post-Doctoral Researcher affiliated with the ATLAS Experiment at CERN, contributing to global advancements in High Energy Physics. His research interests include Quantum Chromodynamics, quark confinement, nuclear decay, and the application of machine learning to High Energy Physics phenomena. Dr. Atangana’s excellence in research has earned him notable honors, including the Best Researcher Award in High Energy Physics, academic scholarships, and leadership roles in scientific collaborations. His skills encompass symbolic computation, scientific programming, and Monte Carlo simulations, all pivotal in modern High Energy Physics modeling and analysis. With an active presence in international conferences and publications across prestigious journals like Nuclear Physics A, European Physical Journal C, and Modern Physics Letters A, he continues to advance High Energy Physics through innovative theoretical frameworks and computational methods. His dedication to advancing knowledge and mentoring the next generation of scientists underscores his professional integrity and global recognition. Scopus profile of 37 Citations, 24 Documents, 3 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Ahmadou, K., Atangana Likéné, A., Mbida Mbembe, S., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt. International Journal of Modern Physics E.

2. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, Oumar Bobbo, M., & Saidou. (2025). Analytical solutions of the 222Rn radon diffusion-advection equation through soil using Atangana–Baleanu time fractional derivative. Indian Journal of Physics.

3. Nga Ongodo, D., Atangana Likéné, A. A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times. The European Physical Journal C.

4. Nga Ongodo, D., Atangana Likéné, A. A., Zarma, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations. International Journal of Modern Physics E.

5. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, & Saidou. (2025). Angular momentum dependence of nuclear decay of radon isotopes by emission of 14C nuclei and branching ratio relative to α-decay. The European Physical Journal Plus.

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.