Mr. Ali Muhammad | Supersymmetry Phenomenology | Best Researcher Award

Mr. Ali Muhammad | Supersymmetry Phenomenology | Best Researcher Award

Ali Muhammad | University of Chinese Academy of Sciences | China

Mr. Ali Muhammad is an emerging theoretical physicist whose expertise centers on Supersymmetry Phenomenology, integrating it deeply into his education, research, and professional practice. He completed his Bachelor’s, Master’s, and Ph.D. studies in Physics with a strong emphasis on Theoretical Physics and Supersymmetry Phenomenology, particularly through his doctoral research at the Institute of Theoretical Physics, University of the Chinese Academy of Sciences. His academic and teaching experience includes serving as a Lecturer in Physics at Leeds College of Science and Arts in Peshawar, where he honed his skills in both education and Supersymmetry Phenomenology. His research contributions, including publications in Physics Letters B and Physical Review D, reflect his ongoing commitment to advancing Supersymmetry Phenomenology, with specific focus on dark matter models, grand unified theories, and collider phenomenology. Mr. Ali Muhammad’s awards, such as multiple merit recognitions and the CAS-ANSO President’s Fellowship, highlight his excellence and dedication. His technical and research skills encompass Mathematica, MATLAB, Fortran, and specialized tools like MicrOMEGAs, which are instrumental in Supersymmetry Phenomenology studies. Through his extensive involvement in group research, model building, and theoretical analysis, he has applied Supersymmetry Phenomenology to address challenges in modern particle physics, cosmology, and quantum field theory. In conclusion, Mr. Ali Muhammad stands out as a promising scholar whose deep engagement with Supersymmetry Phenomenology, analytical capabilities, and collaborative research outlook position him as a valuable contributor to global advancements in theoretical and high-energy physics.

Profiles: Scopus | ORCID

Featured Publications

1. Khan, I., Muhammad, A., Li, T., & Raza, S. (2025). Revisiting the electroweak supersymmetry from the generalized minimal supergravity.

2. Khan, I., Muhammad, A., Li, T., Raza, S., & Khan, M. (2025). The light neutralino dark matter at future colliders in the MSSM with the generalized minimal supergravity (GmSUGRA).

3. Khan, I., Ahmed, W., Li, T., Raza, S., & Muhammad, A. (2025). The light neutralino dark matter in the generalized minimal supergravity (GmSUGRA). Physics Letters B.

4. Khan, I., Muhammad, A., Li, T., & Raza, S. (2025). Revisiting the realistic intersecting D6-brane model with positive and negative μ terms. Physical Review D.

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Professor of Emeritus | Institute of Science Tokyo | Japan

Prof. Dr. Kyosuke Ono is an esteemed physicist renowned for his pioneering contributions to Standard Model Physics and applied tribology. His distinguished career at the Tokyo Institute of Technology, where he served as a professor and later as an emeritus scholar, is marked by extensive research in Standard Model Physics that bridges fundamental particle behavior with mechanical system dynamics. Throughout his tenure, Prof. Dr. Ono made significant advances in understanding sub-monolayer lubricant physics within the head-disk interface, offering crucial insights that align the precision of Standard Model Physics principles with nanoscale mechanical phenomena. His scholarly work reflects deep engagement with the continuum mechanics framework and its extension into sub-monolayer film theory, where Standard Model Physics served as the theoretical backbone guiding molecular interactions and force distributions at the atomic level. Prof. Dr. Ono’s prolific academic output includes numerous publications in leading international journals such as Tribology Letters, ASME Transactions on Tribology, and ASME Transactions on Applied Mechanics. His h-index of 26 demonstrates substantial influence and citation within the global Standard Model Physics and mechanical engineering communities. His collaborations with the Storage Research Consortium in Japan and industrial contributions as a technical advisor for hard disk drive development underscore his ability to translate Standard Model Physics insights into practical innovations with lasting industrial relevance. Furthermore, as an editorial board member for Lubricants (EDPI), he has consistently advanced the dissemination of high-quality research in the interdisciplinary field of tribology and Standard Model Physics. Through his remarkable integration of theory, experimentation, and application, Prof. Dr. Kyosuke Ono has significantly shaped modern interpretations of nanoscale lubrication and dynamics. His work stands as a testament to the versatility of Standard Model Physics in solving real-world engineering problems and continues to inspire the next generation of researchers to extend the boundaries of applied and theoretical physics.

Profile: ORCID

Featured Publication

1. Ono, K. (2016–2019). Analytical study of slider vibrations and lubricant flow in subnanometer head-disk interface [Grant No. 16K06039]. Ministry of Education, Science and Technology, Tokyo, Japan.

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.

Dr. Manda Malekpour | Higgs Physics | Best Researcher Award

Dr. Manda Malekpour | Higgs Physics | Best Researcher Award

Researcher | University of Mazandaran | Iran

 Dr. Manda Malekpour is a distinguished physicist specializing in gravity, cosmology, and Higgs Physics, whose academic journey through advanced studies in cosmological inflation and gravitational theory demonstrates exceptional research depth. Her scholarly focus intertwines Higgs Physics with unimodular gravity, emphasizing the theoretical framework connecting cosmic inflation and the Higgs field. Through her doctoral and master’s research, she explored nonminimal unimodular cosmological inflation and the spectral properties of gravitational waves, integrating Higgs Physics concepts into cosmological models. Her publication record, including studies on Higgs inflation in unimodular gravity and ongoing research on reheating after Higgs inflation, highlights her continuing contribution to Higgs Physics. Dr. Malekpour’s academic work reflects mastery in theoretical modeling, programming, and computational simulation relevant to Higgs Physics and early-universe dynamics. Her analytical strength and ability to merge Higgs Physics with quantum field approaches have earned her recognition and awards within academic circles. She possesses strong research skills in mathematical physics, cosmological perturbation theory, and data analysis using Python and Maple. Her work represents a vital link between gravity, cosmology, and Higgs Physics, contributing to the deeper understanding of universe formation mechanisms. Dr. Malekpour’s innovative approach to Higgs Physics continues to advance modern cosmology and inspire new theoretical pathways for studying the universe’s fundamental structure, marking her as a promising contributor to the global scientific community. Her Google Scholar Citations 5, h-index 2, i10 index 0,

Profile: Google Scholar

Featured Publications

1. Nozari, K., & Malekpour, M. (2024). Higgs inflation in unimodular gravity. Progress of Theoretical and Experimental Physics, 2024(6), 063E02.

2. Malekpour, M., Nozari, K., Rajabi, F., & Rashidi, N. (2024). Non-minimal unimodular inflation. Physics of the Dark Universe, 43, 101405.

3. Malekpour, M., & Nozari, K. (2025). Reheating after the Higgs inflation. Annals of Physics, 170244.