Prof. Ahmed Ouadha | Computational Methods | Best Researcher Award

Prof. Ahmed Ouadha | Computational Methods | Best Researcher Award

Prof at USTO-MB | Algeria

Prof. Ahmed Ouadha is a distinguished academic specializing in energy systems and marine engineering. His expertise covers thermodynamics, refrigeration, marine diesel engines, and exergy analysis with a strong integration of Computational Methods. His career reflects a commitment to advancing innovative Computational Methods for analyzing complex thermal and fluid systems. Through Computational Methods, he has contributed extensively to the optimization of marine propulsion and refrigeration cycles. Prof. Ouadha’s leadership in academic and industrial collaborations strengthens the practical application of Computational Methods in engineering research. He continues to explore new Computational Methods to address emerging challenges in sustainable energy systems, positioning himself at the forefront of technological advancement in marine and mechanical engineering fields globally.

Professional Profiles

Google Scholar Profile | ORCID Profile | Scopus Profile

Education 

Prof. Ahmed Ouadha obtained multiple degrees in energetic and marine engineering, providing a solid academic foundation for research and teaching. His educational journey focused on applying Computational Methods in thermodynamic systems, refrigeration cycles, and marine propulsion optimization. Advanced studies enabled him to integrate Computational Methods for exergy analysis, heat transfer modeling, and fluid mechanics simulations. The emphasis on Computational Methods throughout his education cultivated skills crucial for developing predictive models and enhancing system efficiency. His academic background demonstrates how Computational Methods can bridge theoretical analysis and industrial solutions. This comprehensive preparation established him as an expert capable of transforming Computational Methods into practical tools for innovative engineering applications.

Experience 

Prof. Ahmed Ouadha has held academic positions advancing from lecturer to full professor in marine engineering, consistently applying Computational Methods to teaching, research, and industrial consultancy. His professional experience emphasizes the strategic use of Computational Methods in optimizing marine diesel engines, refrigeration systems, and energy recovery solutions. He has supervised numerous research projects where Computational Methods guided experimental designs, data analysis, and system modeling. Industrial training and consulting engagements benefited from Computational Methods to diagnose and improve ship performance. His professional path illustrates how Computational Methods drive innovation across education, research, and practical engineering domains, reinforcing his reputation as a leader in applying Computational Methods effectively.

Research Interest 

Prof. Ahmed Ouadha’s research interests span thermodynamics, marine diesel engines, refrigeration, cryogenics, exergy analysis, and fluid dynamics, with Computational Methods serving as a core approach. He employs Computational Methods to simulate and optimize marine propulsion systems and heat transfer mechanisms, ensuring enhanced efficiency and sustainability. His focus includes applying Computational Methods to analyze alternative fuels, waste heat recovery cycles, and advanced refrigeration technologies. These Computational Methods support the development of predictive tools and environmentally responsible engineering solutions. By continuously integrating Computational Methods into evolving research areas, Prof. Ouadha advances the boundaries of knowledge while addressing pressing global energy and marine industry challenges.

Award and Honor

Prof. Ahmed Ouadha has been recognized for his exceptional academic and research contributions, often centered around the innovative application of Computational Methods. His work using Computational Methods in marine energy systems has earned distinctions in conferences and journals. These awards highlight the impact of Computational Methods in optimizing performance, reducing emissions, and improving sustainability in marine and thermal engineering. Honors received underscore his role as a pioneer integrating Computational Methods in multi-disciplinary projects. Through such achievements, he has elevated both academic standards and industrial practices, proving the transformative influence of Computational Methods in engineering advancements globally and inspiring future generations of researchers.

Research Skill

Prof. Ahmed Ouadha possesses a broad set of research skills rooted in Computational Methods. His expertise includes modeling thermodynamic cycles, simulating fluid dynamics, and conducting exergy and entropy analyses using Computational Methods. He demonstrates strong capabilities in designing and validating advanced engineering systems where Computational Methods enhance predictive accuracy. His skills extend to integrating Computational Methods with experimental approaches, yielding robust insights for marine propulsion and refrigeration systems. He effectively applies Computational Methods to develop innovative solutions addressing energy efficiency, emissions control, and sustainable operations. This mastery of Computational Methods positions him as an essential contributor to cutting-edge engineering research and practical technological progress.

Publication Top Notes 

Title: Numerical study of energy separation in a vortex tube with different RANS models
Journal: International Journal of Thermal Sciences
Authors: M Baghdad, A Ouadha, O Imine, Y Addad
Citation: 108

Title: Integration of an ammonia-water absorption refrigeration system with a marine Diesel engine: A thermodynamic study
Journal: Procedia Computer Science
Authors: A Ouadha, Y El-Gotni
Citation: 94

Title: Effects of variable thermophysical properties on flow and energy separation in a vortex tube
Journal: International Journal of Refrigeration
Authors: A Ouadha, M Baghdad, Y Addad
Citation: 54

Title: Thermodynamic analysis of an HCCI engine based system running on natural gas
Journal: Energy Conversion and Management
Authors: M Djermouni, A Ouadha
Citation: 53

Title: Exergy analysis of a two-stage refrigeration cycle using two natural substitutes of HCFC22
Journal: International Journal of Exergy
Authors: A Ouadha, M En-Nacer, L Adjlout, O Imine
Citation: 51

Title: Combustion characteristics of hydrogen-rich alternative fuels in counter-flow diffusion flame configuration
Journal: Energy Conversion and Management
Authors: K Safer, F Tabet, A Ouadha, M Safer, I Gökalp
Citation: 34

Title: Thermodynamic analysis of methanol, ammonia, and hydrogen as alternative fuels in HCCI engines
Journal: International Journal of Thermofluids
Authors: M Djermouni, A Ouadha
Citation: 32

Title: Simulation of a syngas counter-flow diffusion flame structure and NO emissions in the pressure range 1–10 atm
Journal: Fuel Processing Technology
Authors: K Safer, F Tabet, A Ouadha, M Safer, I Gökalp
Citation: 32

Title: A numerical investigation of structure and emissions of oxygen-enriched syngas flame in counter-flow configuration
Journal: International Journal of Hydrogen Energy
Authors: M Safer, F Tabet, A Ouadha, K Safer
Citation: 28

Title: Comparative assessment of LNG and LPG in HCCI engines
Journal: Energy Procedia
Authors: M Djermouni, A Ouadha
Citation: 24

Title: An exergy analysis of various layouts of ORC-VCC systems for usage in waste heat recovery onboard ships
Journal: Marine Systems & Ocean Technology
Authors: O Bounefour, A Ouadha, Y Addad
Citation: 20

Title: Entropy generation in turbulent syngas counter-flow diffusion flames
Journal: International Journal of Hydrogen Energy
Authors: K Safer, A Ouadha, F Tabet
Citation: 18

Title: Performance comparison of cascade and two-stage refrigeration cycles using natural refrigerants
Journal: The 22nd International Congress of Refrigeration
Authors: A Ouadha, C Haddad, M En-Nacer, O Imine
Citation: 18

Title: Effects of kinetic energy and conductive solid walls on the flow and energy separation within a vortex tube
Journal: International Journal of Ambient Energy
Authors: M Baghdad, A Ouadha, Y Addad
Citation: 17

Title: Performance analysis of oxygen refrigerant in an LNG BOG re-liquefaction plant
Journal: Procedia Computer Science
Authors: BM Beladjine, A Ouadha, L Adjlout
Citation: 16

Title: Performance improvement of combined organic Rankine-vapor compression cycle using serial cascade evaporation in the organic cycle
Journal: Energy Procedia
Authors: O Bounefour, A Ouadha
Citation: 15

Title: Thermodynamic analysis and working fluid optimization of a combined ORC-VCC system using waste heat from a marine diesel engine
Journal: ASME International Mechanical Engineering Congress and Exposition
Authors: O Bounefour, A Ouadha
Citation: 13

Title: Flow and heat transfer features during propane (R290) and isobutane (R600a) boiling in a tube
Journal: International Journal of Thermofluids
Authors: R Fenouche, A Ouadha
Citation: 12

Title: Exergy analysis of an LNG BOG reliquefaction plant
Journal: Proceedings of the 23rd IIR International Congress of Refrigeration
Authors: BM Beladjine, A Ouadha, Y Benabdesslam, L Adjlout
Citation: 11

Title: CFD-based analysis of entropy generation in turbulent double diffusive natural convection flow in square cavity
Journal: MATEC Web of Conferences
Authors: K Said, A Ouadha, A Sabeur
Citation: 9

Conclusion

Prof. Ahmed Ouadha’s career exemplifies excellence in research, education, and innovation driven by Computational Methods. His contributions impact academic advancement, industrial efficiency, and environmental sustainability. By employing Computational Methods across multiple disciplines, he transforms theoretical concepts into practical solutions for marine propulsion, refrigeration, and energy systems. His leadership fosters collaborations where Computational Methods enable breakthroughs addressing contemporary engineering challenges. The consistency, depth, and vision in applying Computational Methods underline his status as a prominent figure in modern mechanical and marine engineering. Prof. Ouadha continues to shape the future of engineering education and technology, demonstrating how Computational Methods can inspire progress globally.