Mr. Ali Muhammad | Supersymmetry Phenomenology | Best Researcher Award

Mr. Ali Muhammad | Supersymmetry Phenomenology | Best Researcher Award

Ali Muhammad | University of Chinese Academy of Sciences | China

Mr. Ali Muhammad is an emerging theoretical physicist whose expertise centers on Supersymmetry Phenomenology, integrating it deeply into his education, research, and professional practice. He completed his Bachelor’s, Master’s, and Ph.D. studies in Physics with a strong emphasis on Theoretical Physics and Supersymmetry Phenomenology, particularly through his doctoral research at the Institute of Theoretical Physics, University of the Chinese Academy of Sciences. His academic and teaching experience includes serving as a Lecturer in Physics at Leeds College of Science and Arts in Peshawar, where he honed his skills in both education and Supersymmetry Phenomenology. His research contributions, including publications in Physics Letters B and Physical Review D, reflect his ongoing commitment to advancing Supersymmetry Phenomenology, with specific focus on dark matter models, grand unified theories, and collider phenomenology. Mr. Ali Muhammad’s awards, such as multiple merit recognitions and the CAS-ANSO President’s Fellowship, highlight his excellence and dedication. His technical and research skills encompass Mathematica, MATLAB, Fortran, and specialized tools like MicrOMEGAs, which are instrumental in Supersymmetry Phenomenology studies. Through his extensive involvement in group research, model building, and theoretical analysis, he has applied Supersymmetry Phenomenology to address challenges in modern particle physics, cosmology, and quantum field theory. In conclusion, Mr. Ali Muhammad stands out as a promising scholar whose deep engagement with Supersymmetry Phenomenology, analytical capabilities, and collaborative research outlook position him as a valuable contributor to global advancements in theoretical and high-energy physics.

Profiles: Scopus | ORCID

Featured Publications

1. Khan, I., Muhammad, A., Li, T., & Raza, S. (2025). Revisiting the electroweak supersymmetry from the generalized minimal supergravity.

2. Khan, I., Muhammad, A., Li, T., Raza, S., & Khan, M. (2025). The light neutralino dark matter at future colliders in the MSSM with the generalized minimal supergravity (GmSUGRA).

3. Khan, I., Ahmed, W., Li, T., Raza, S., & Muhammad, A. (2025). The light neutralino dark matter in the generalized minimal supergravity (GmSUGRA). Physics Letters B.

4. Khan, I., Muhammad, A., Li, T., & Raza, S. (2025). Revisiting the realistic intersecting D6-brane model with positive and negative μ terms. Physical Review D.

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Professor of Emeritus | Institute of Science Tokyo | Japan

Prof. Dr. Kyosuke Ono is an esteemed physicist renowned for his pioneering contributions to Standard Model Physics and applied tribology. His distinguished career at the Tokyo Institute of Technology, where he served as a professor and later as an emeritus scholar, is marked by extensive research in Standard Model Physics that bridges fundamental particle behavior with mechanical system dynamics. Throughout his tenure, Prof. Dr. Ono made significant advances in understanding sub-monolayer lubricant physics within the head-disk interface, offering crucial insights that align the precision of Standard Model Physics principles with nanoscale mechanical phenomena. His scholarly work reflects deep engagement with the continuum mechanics framework and its extension into sub-monolayer film theory, where Standard Model Physics served as the theoretical backbone guiding molecular interactions and force distributions at the atomic level. Prof. Dr. Ono’s prolific academic output includes numerous publications in leading international journals such as Tribology Letters, ASME Transactions on Tribology, and ASME Transactions on Applied Mechanics. His h-index of 26 demonstrates substantial influence and citation within the global Standard Model Physics and mechanical engineering communities. His collaborations with the Storage Research Consortium in Japan and industrial contributions as a technical advisor for hard disk drive development underscore his ability to translate Standard Model Physics insights into practical innovations with lasting industrial relevance. Furthermore, as an editorial board member for Lubricants (EDPI), he has consistently advanced the dissemination of high-quality research in the interdisciplinary field of tribology and Standard Model Physics. Through his remarkable integration of theory, experimentation, and application, Prof. Dr. Kyosuke Ono has significantly shaped modern interpretations of nanoscale lubrication and dynamics. His work stands as a testament to the versatility of Standard Model Physics in solving real-world engineering problems and continues to inspire the next generation of researchers to extend the boundaries of applied and theoretical physics.

Profile: ORCID

Featured Publication

1. Ono, K. (2016–2019). Analytical study of slider vibrations and lubricant flow in subnanometer head-disk interface [Grant No. 16K06039]. Ministry of Education, Science and Technology, Tokyo, Japan.