Ovidiu Cristinel Stoica | Quantum Mechanics | Best Researcher Award

Dr. Ovidiu Cristinel Stoica | quantum mechanics | Best Researcher Award

Dr. Ovidiu Cristinel Stoica, National Institute of Physics and Nuclear Engineering – Horia Hulube, Romania

Dr. Ovidiu Cristinel Stoica is a researcher at the National Institute of Physics and Nuclear Engineering – Horia Hulubei in Bucharest, Romania. He specializes in theoretical physics, focusing on quantum foundations, general relativity, and particle physics. With a PhD in Geometry from the University Politehnica of Bucharest, Dr. Stoica’s research interests include the ontological aspects of the wavefunction, black holes, and the mathematical frameworks underlying modern physics, such as semi-Riemannian geometry and differential topology. He has contributed to various research initiatives, including the CANTATA network, aimed at advancing theoretical astrophysics and cosmology.

 

Orcid Profile

Educational Details

Dr. Ovidiu Cristinel Stoica earned his PhD in Geometry from the University Politehnica of Bucharest in 2013, focusing on “Singular General Relativity” under the supervision of Prof. Dr. Constantin Udriște. Prior to this, he was a PhD candidate at the Institute of Mathematics of the Romanian Academy, where he specialized in the Geometry of Fiber Bundles. He holds a Master’s degree in Differential Geometry from the University of Bucharest, where he wrote a thesis on “Spinors in Geometry and Physics.” Dr. Stoica also completed his undergraduate studies at the University of Bucharest, majoring in Mathematics–Research, with a specialization in Differential Geometry.

Professional Experience

Since 2014, Dr. Stoica has been a researcher at the National Institute of Physics and Nuclear Engineering – Horia Hulubei in Bucharest, Romania, where he focuses on theoretical physics. His previous roles include being a PhD student supported by a Romanian Government grant from 2009 to 2011. He has a strong foundation in both theoretical physics and mathematics, combining rigorous mathematical frameworks with physical theories.

Research Interest

Dr. Stoica’s research spans various fundamental areas of theoretical physics and mathematics, including:

Quantum Foundations: Examining the ontological aspects of the wavefunction, entanglement, the measurement problem, and the interplay between quantum mechanics and relativity.

General Relativity: Investigating singularities, Einstein’s equations, black holes, and the Big Bang, as well as quantum gravity and quantum field theory on curved backgrounds.

Particle Physics: Exploring the Standard Model, gauge theories, Yang-Mills equations, grand unified theories, and the geometric properties of particles, including the Dirac equation and Kaluza-Klein theories.

Mathematics: Researching semi-Riemannian geometry, differential topology, representation theory, Clifford algebras, and various other advanced mathematical structures relevant to physics.

Top Notable Publications

Is the Wavefunction Already an Object on Space?

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Symmetry

DOI: 10.3390/sym16101379

Freedom in the Many-Worlds Interpretation

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Foundations of Physics

DOI: 10.1007/s10701-024-00802-5

Empirical adequacy of the time operator canonically conjugate to a Hamiltonian generating translations

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Physica Scripta

DOI: 10.1088/1402-4896/ad59d2

Does Quantum Mechanics Require “Conspiracy”?

Authors: Ovidiu Cristinel Stoica

Year: 2024

Journal: Entropy

DOI: 10.3390/e26050411

Does a computer think if no one is around to see it?

Authors: Ovidiu Cristinel Stoica

Year: 2024

Type: Preprint

DOI: 10.36227/techrxiv.170785780.04523688/v1

The Relation between Wavefunction and 3D Space Implies Many Worlds with Local Beables and Probabilities

Authors: Ovidiu Cristinel Stoica

Year: 2023

Journal: Quantum Reports

DOI: 10.3390/quantum5010008

Conclusion

Overall, Dr. Ovidiu Cristinel Stoica’s extensive research interests, significant contributions to quantum mechanics and relativity, solid educational background, collaborative spirit, and technical skills make him exceptionally well-suited for the Research for Best Researcher Award. His work not only enriches the scientific community but also paves the way for future advancements in physics.

 

Muhammad Sajid | Quantum Science | Best Researcher Award

Dr. Muhammad Sajid | Quantum Science | Best Researcher Award

Orcid Profile

Scopus Profile

Educational Details:

Dr. Muhammad Sajid is a physicist with expertise in quantum simulations, condensed matter physics, and quantum information. He earned his Ph.D. in Physics (Magna cum Laude) from Bonn University, Germany, in 2018, under the supervision of Professor Dieter Meschede and Dr. Andrea Alberti. His thesis focused on the “Magnetic Quantum Walks of Neutral Atoms in Optical Lattices.” Prior to his doctoral studies, Dr. Sajid completed an M.Phil. in Physics in 2012 at Quaid-i-Azam University, Islamabad, where he studied the behavior of Bose-Einstein Condensates under Gaussian random potentials. He also holds an M.Sc. in Physics (2010) from the same institution, where he was awarded the Chancellor Medal, and a B.Sc. with Distinction from the University of Peshawar (2007). His academic journey began with a distinguished performance during his F.Sc. Pre-Engineering studies in 2005 and matriculation in 2003, both completed with distinctions in Peshawar.

Professional Experience

Professionally, Dr. Sajid has been a Postdoctoral Researcher at the Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China (UESTC), since December 2023. Before that, he served as an Assistant Professor in Physics at Kohat University of Science and Technology, Pakistan, from February 2018 to December 2023, and as a Lecturer in Physics at the same institution from December 2010 to February 2018. His academic roles have involved both teaching and research, with a focus on advancing the understanding of quantum systems.

Research Interest

Dr. Sajid’s research interests encompass a broad range of topics within quantum physics. He is particularly interested in Quantum Walks, Quantum Simulations with Quantum Walks, Condensed Matter Physics, Quantum Information and Computation, Topological Phenomena in Driven Quantum Systems, Bose-Einstein Condensates, and Many-Body Localization. His work delves into both theoretical and experimental aspects of these phenomena, contributing to the advancement of knowledge in quantum systems and their potential applications.

Top Notable Publications

Sajid, M., Khan, N.A., & Shah, M. (2024). Topological pumping in an inhomogeneous Aubry–André model. Chinese Journal of Physics, 92, 311–320.
Citations: 0

Shah, M., Shah, M., Khan, N.A., Abo-Dief, H.M., & Alzahrani, E. (2024). Spin and valley-polarized Faraday rotation in irradiated buckled Xene materials. Optical Materials Express, 14(7), 1676–1689.
Citations: 1

Shah, M., Shah, M., Khan, N.A., Jan, M., & Xianlong, G. (2024). Tunable quantized spin Hall effect of light in graphene. Results in Physics, 60, 107676.
Citations: 2

Shah, M., Hayat, A., Sajid, M., Khan, N.A., & Jan, M. (2023). Photonic spin Hall effect in uniaxially strained graphene. Physica Scripta, 98(12), 125943.
Citations: 3

Sajid, M., Shah, M., Khan, N.A., & Jan, M. (2023). Quantum walks in an inhomogeneous off-diagonal Aubry-André-Harper model. Physics Letters A, 469, 128763.
Citations: 1

Shah, M., Khan, N.A., & Sajid, M. (2022). Optical conductivity of ultrathin Floquet topological insulators. Journal of Physics D: Applied Physics, 55(41), 415103.
Citations: 1

Khan, N.A., Muhammad, S., Sajid, M., & Saud, S. (2022). Single parameter scaling in the non-Hermitian Anderson model. Physica Scripta, 97(7), 075817.
Citations: 0

Khan, N.A., Jan, M., Shah, M., Ali, M., & Khan, D. (2022). Entanglement-based measure of non-Makovianity in relativistic frame. Optik, 260, 169016.
Citations: 0

Khan, N.A., Muhammad, S., & Sajid, M. (2022). Single parameter scaling in the correlated Anderson model. Physica E: Low-Dimensional Systems and Nanostructures, 139, 115150.
Citations: 6

Conclusion

Dr. Muhammad Sajid’s extensive experience in quantum simulations, condensed matter physics, and Bose-Einstein Condensates, along with his impressive educational achievements and teaching career, make him a highly suitable candidate for the Best Researcher Award. His contributions to quantum physics demonstrate both depth and innovation, positioning him as a leader in his field.