Homnath luitel | Condensed Matter Physics | Young Scientist Award

Dr. Homnath luitel | Condensed Matter Physics | Young Scientist Award

Assistant Professor at Nar Bahadur Bhandari Government College, Tadong , Gangtok, under education department, Govt. Of Sikkim, India

Dr. Homnath Luitel is an accomplished physicist and educator 👨‍🏫 with a diverse academic and research background in condensed matter physics and geophysics. With a PhD from the Homi Bhabha National Institute (conducted at VECC, Kolkata), he has delved deeply into the quantum-level behavior of materials. Currently serving as an Assistant Professor in the Education Department, Government of Sikkim 🇮🇳, and most recently a Post-Doctoral Research Fellow at the School of Physics, Wits University 🇿🇦, he exemplifies a blend of academic excellence and practical expertise. His work spans cutting-edge domains like DMS, spintronics, magnetism, and Himalayan slope stability 🏔️. Honored with multiple awards including Best Research Contribution (HBNI, 2018) and recognitions by Elsevier and Taylor & Francis 🏆, he’s also a national-level exam qualifier (GATE, JEST, IIT-JAM). Dr. Luitel continues to inspire with his commitment to science, mentorship, and interdisciplinary innovation. 🌟

Professional Profile 

Orcid

Scopus

Google Scholar

🎓 Education

Dr. Homnath Luitel’s academic path reflects a consistent pursuit of excellence 📚. He earned his B.Sc. (Honours) from Sikkim Government College under Sikkim University, followed by an M.Sc. in Physics from Sikkim University 🧠. His passion led him to complete a post-M.Sc. research course at the prestigious VECC, Kolkata, which paved the way for his PhD at Homi Bhabha National Institute, Mumbai, with his research carried out at VECC 🧪. Along the way, he demonstrated outstanding academic merit by qualifying multiple national exams such as IIT-JAM, GATE, JEST, and SLET-NE 🎖️. This rigorous and progressive education laid a strong foundation for his foray into high-impact research. His early education through CBSE also reflects a consistent academic focus right from school days. From the Eastern Himalayas to national research hubs, Dr. Luitel’s educational journey bridges regions and research ecosystems seamlessly. 🌐

🧑‍🏫 Professional Experience

Dr. Luitel’s professional career is both impactful and versatile, merging teaching with pioneering research 🏫🔬. Since 2019, he has been nurturing minds as an Assistant Professor in the Education Department, Government of Sikkim, and currently contributes his expertise to the Department of Physics at Nar Bahadur Bhandari Government College, Tadong. In 2024, his research took an international turn with a Post-Doctoral Fellowship at the School of Physics, University of the Witwatersrand, South Africa 🌍. His teaching is enriched by hands-on research in condensed matter physics and functional materials, allowing students to gain both theoretical insights and experimental understanding. His lab-based expertise includes operating SQUIDs, dilution fridges, and various spectroscopy and characterization tools ⚙️. With a clear passion for both learning and imparting knowledge, Dr. Luitel exemplifies the modern-day scholar who balances academia, research, and mentorship with dedication. 🎓📈

🔬 Research Interest

Dr. Luitel’s research interests are rooted in the intricate physics of materials and earth systems 🌌🌍. In condensed matter physics, his work focuses on defects in solids, dilute magnetic semiconductors (DMS), magnetism, spintronics, and diamond-based functional materials 💎🧲. His expertise with advanced characterization tools like PAS, SQUID, and DFT enables him to probe materials at atomic scales, uncovering phenomena vital to future electronics and quantum computing 🖥️. Beyond materials, he explores geophysical challenges such as slope stability and subsurface profiling in the Himalayan terrain using electrical resistivity surveys (ERS) and geotechnical methods ⛰️. His interdisciplinary approach allows him to connect quantum-scale phenomena with macroscale natural systems, offering unique insights for both applied science and sustainable development. Dr. Luitel’s dual engagement with the physical and geophysical domains reflects a rare scientific breadth and a drive to address both fundamental and societal challenges. 🌟

🏅 Awards and Honors

Dr. Homnath Luitel has been the recipient of multiple prestigious recognitions that celebrate his research prowess and academic contributions 🏆. He earned the Best Research Contribution Award at HBNI’s RSM in 2018 and the Best Research Award in the theme Science, Technology, and Society at the 6th Bharatiya Vigyan Sammelan 2023 in Gujarat 🥇. As a recognized reviewer for renowned journals including Philosophical Magazine (Taylor & Francis), JMMM, and Computational Condensed Matter (Elsevier), his peer-review expertise is acknowledged internationally 📑🌐. He was also invited as a Resource Person and Jury Member for the Young Scientist Conference at IISF 2022, hosted by India’s Department of Biotechnology and allied national science agencies 👨‍⚖️🔬. His success in competitive national exams like GATE, JEST, and SLET further showcases his academic excellence. These honors not only mark his scientific impact but also his role in mentoring and evaluating emerging talent in India’s science landscape.

Publications Top Notes 

1. First-principles study of magnetic properties of the transition metal ion-doped methylammonium lead bromide

  • Authors: Homnath Luitel

  • Year: 2022

  • DOI: 10.1142/s0217979222502022

  • Source: International Journal of Modern Physics B

  • Summary: This study employs first-principles calculations to investigate the magnetic properties of methylammonium lead bromide (MAPbBr₃) doped with transition metal ions. The research aims to understand how doping influences the magnetic behavior of this perovskite material, which is significant for potential applications in spintronics.


2. Half-metallic ferromagnetism in molybdenum doped methylammonium lead halides (MAPbX₃, X = Cl, Br, I) system: First-principles study

  • Authors: Homnath Luitel

  • Year: 2021

  • DOI: 10.1016/j.jmmm.2020.167463

  • Source: Journal of Magnetism and Magnetic Materials

  • Summary: The paper explores the electronic and magnetic properties of molybdenum-doped methylammonium lead halides using first-principles calculations. The findings suggest that such doping can induce half-metallic ferromagnetism, making these materials promising candidates for spintronic devices.


3. Room-temperature ferromagnetism in boron-doped oxides: a combined first-principle and experimental study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1080/09500839.2020.1733122

  • Source: Philosophical Magazine Letters

  • Summary: This study combines experimental techniques and first-principles calculations to investigate room-temperature ferromagnetism in boron-doped oxides. The research provides insights into the mechanisms driving ferromagnetism in these materials, which are relevant for spintronic applications.


4. NMR study of defect-induced magnetism in methylammonium lead iodide perovskite

  • Authors: Bilwadal Bandyopadhyay, Homnath Luitel, Sayantan Sil, Joydeep Dhar, Mahuya Chakrabarti, Palash Nath, Partha P. Ray, Dirtha Sanyal

  • Year: 2020

  • DOI: 10.1103/PhysRevB.101.094417

  • Source: Physical Review B

  • Summary: The paper presents nuclear magnetic resonance (NMR) studies on methylammonium lead iodide perovskite, revealing that defects such as iodine and lead vacancies can induce magnetism. The findings highlight the role of structural defects in influencing the magnetic properties of perovskite materials.


5. Ferromagnetic ordering in cobalt doped methylammonium lead bromide: An ab-initio study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.cocom.2019.e00444

  • Source: Computational Condensed Matter

  • Summary: This ab-initio study investigates the magnetic properties of cobalt-doped methylammonium lead bromide. The research demonstrates that cobalt doping can lead to ferromagnetic ordering, suggesting potential applications in spintronic devices.


6. Ferromagnetic property of copper doped ZnO: a first-principles study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.cocom.2020.e00455

  • Source: Computational Condensed Matter

  • Summary: The study uses first-principles calculations to explore the ferromagnetic properties of copper-doped ZnO. The results indicate that copper doping induces ferromagnetism in ZnO, which is significant for the development of dilute magnetic semiconductors.


7. Half metallic ferromagnetic and optical properties of ruthenium-doped zincblende ZnS: A first principles study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.jpcs.2019.109175

  • Source: Journal of Physics and Chemistry of Solids

  • Summary: This paper investigates the electronic, magnetic, and optical properties of ruthenium-doped zincblende ZnS using first-principles methods. The findings suggest that such doping can result in half-metallic ferromagnetism, enhancing the material’s suitability for spintronic applications. 


8. Defect induced room temperature ferromagnetism in methylammonium lead iodide perovskite

  • Authors: Sayantan Sil, Homnath Luitel, Mahuya Chakrabarty, Partha P. Ray, Joydeep Dhar, Bilwadal Bandyopadhyay, Dirtha Sanyal

  • Year: 2020

  • DOI: 10.1016/j.physleta.2020.126278

  • Source: Physics Letters A

  • Summary: The research combines experimental observations and theoretical calculations to demonstrate that defects, particularly iodide vacancies, can induce room-temperature ferromagnetism in methylammonium lead iodide perovskite. This highlights the potential of defect engineering in tailoring magnetic properties of perovskite material.


9. Enhanced stability and ferromagnetic property in transition metals co-doped rutile TiO₂

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.jpcs.2020.109582

  • Source: Journal of Physics and Chemistry of Solids

  • Summary: This study explores the effects of co-doping rutile TiO₂ with transition metals on its structural stability and magnetic properties. The results indicate that co-doping enhances both the stability and ferromagnetic behavior of TiO₂, making it a promising material for spintronic applications.


10. Magnetic properties of transition metal doped SnO₂: A detailed theoretical study

  • Authors: Homnath Luitel

  • Year: 2019

  • DOI: 10.1016/j.cocom.2019.e00393

  • Source: Computational Condensed Matter

  • Summary: The paper presents a theoretical investigation into the magnetic properties of SnO₂ doped with various transition metals. The findings provide insights into how different dopants influence the magnetic behavior of SnO₂, which is valuable for designing materials with desired magnetic properties.

Conclusion 

In sum, Dr. Homnath Luitel stands out as a dynamic physicist, dedicated educator, and interdisciplinary researcher whose work spans from the quantum to the geophysical 🌐. With a solid foundation in theoretical and experimental physics, his academic journey from the Himalayan region to global research hubs showcases both resilience and brilliance 🌄🔭. He continues to bridge high-end research with grassroots teaching, inspiring young minds while contributing to advancements in material science, spintronics, and sustainable geoscience. Recognized both nationally and internationally for his research and review contributions, Dr. Luitel is a shining example of scholarly excellence 🌟. His technical toolkit, spanning DFT simulations to SQUID operations and ERS surveys, further demonstrates his rare combination of skills and adaptability 🔧🔬. As he progresses in his career, his vision of science as a tool for understanding both the smallest particles and the largest landscapes remains an inspiration for future generations. 💡🌍