Assoc. Prof. Dr. Krishna Pada Das | Mathematics | Best Researcher Award

Assoc. Prof. Dr. Krishna Pada Das | Mathematics | Best Researcher Award

Associate Professor | Mahadevananda Mahavidyalaya | India

Assoc. Prof. Dr. Krishna Pada Das, a distinguished scholar in Mathematics, currently serves as an Associate Professor in the Department of Mathematics at Mahadevananda Mahavidyalaya, Barrackpore. His academic journey includes a Bachelor’s and Master’s degree in Mathematical Science from Calcutta University and a Doctorate in Applied Mathematics from Jadavpur University, where he conducted pioneering research under the supervision of Prof. Joydev Chattopadhyay at the Indian Statistical Institute. With extensive professional experience as a researcher and educator, he has contributed significantly to the field of Mathematics through his exploration of eco-epidemiological models, nonlinear dynamics, and bifurcation theory. His Mathematics research primarily focuses on the dynamics of predator-prey systems, infectious disease modeling, and population ecology using advanced mathematical tools such as fractional calculus, diffusion, stochastic processes, and delay differential equations. Over the course of his Mathematics career, Assoc. Prof. Dr. Krishna Pada Das has published more than ninety high-impact Mathematics research papers and guided multiple Ph.D. candidates in applied and computational Mathematics. His notable Mathematics achievements include the ISI Research Award and clearing the SLET examination, recognizing his exceptional academic and research proficiency in Mathematics. His Mathematics skills encompass mathematical modeling, numerical simulation using MATLAB, and analytical techniques for stability and chaos control in biological systems. In conclusion, his Mathematics contributions have strengthened interdisciplinary research connecting ecology, epidemiology, and applied mathematics, solidifying his position as a prominent researcher. Google Scholar profile of 1840 Citations, 23 h-index, 38 i10 index.

Profile: Google Scholar

Featured Publications

1. Das, K., & Mukherjee, A. K. (2007). Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: Role of biosurfactants in enhancing. Journal of Applied Microbiology, 102(1), 195–203.

2. Dutta, S. K., Das, K., Ghosh, B., & Blackman, C. F. (1992). Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio‐frequency electromagnetic radiation. Bioelectromagnetics, 13(4), 317–322.

3. Soni, B. K., Das, K., & Ghose, T. K. (1982). Bioconversion of agro-wastes into acetone butanol. Biotechnology Letters, 4(1), 19–22.

4. Kooi, B. W., van Voorn, G. A. K., & Das, K. P. (2011). Stabilization and complex dynamics in a predator–prey model with predator suffering from an infectious disease. Ecological Complexity, 8(1), 113–122.

5. Das, C. R., Mondal, N. K., Aditya, P., Datta, J. K., Banerjee, A., & Das, K. (2012). Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian Journal of Experimental Biological Sciences, 3(1), 59–65.*

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Leading Scientific Researcher | Institute for Applied Problemss of Mechanics and Mathematics | Ukraine

Prof. Viktor Mykhas’kiv is a distinguished researcher at the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine. His academic achievements include a Doctor of Science in Physics and Mathematics and a professorship in Mechanics of Deformable Solids. His extensive expertise in Computational Methods spans across Computational Mechanics, Materials Science, Structural Mechanics, and Multiscale Mathematical Modeling. Through his pioneering work, he has applied Computational Methods to study wave propagation, metamaterials, and nanomechanics, advancing knowledge in multiple scattering theory. His research leadership in international collaborations under INTAS, STCU, DAAD, DFG, and Fulbright programs highlights his ability to integrate Computational Methods within global scientific frameworks. As a team leader and project manager, he has promoted innovative Computational Methods in the investigation of elastic metamaterials and complex lattice structures. He has published widely, authoring over seventy-six Scopus-indexed papers, two books, and contributing to editorial boards of international journals like Mathematical Methods and Physicomechanical Fields. His commitment to excellence in Computational Methods is reflected in his role as a member of the European Structural Integrity Society. He has also served as a visiting researcher in the USA and Germany, applying Computational Methods to solve advanced mechanical and physical problems. His awards and honors recognize his groundbreaking use of Computational Methods in applied mechanics and theoretical modeling. With remarkable research skills and professional integrity, Prof. Viktor Mykhas’kiv continues to contribute significantly to global scientific progress. Scopus profile of 474 Citations, 76 Documents, 14 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Stankevych, V. Z., & Mykhas’kiv, V. V. (2023). Intensity of dynamic stresses of longitudinal shear in a periodically layered composite with penny-shaped cracks. Journal of Mathematical Sciences, 269(2), 268–280.

2. Mykhas’kiv, V. V., & Stasyuk, B. M. (2021). Effective elastic moduli of short-fiber composite with sliding contact conditions at interfaces. Mechanics of Composite Materials, 57(6), 845–854.

3. Mykhas’kiv, V., & Stankevych, V. (2019). Elastodynamic problem for a layered composite with penny-shaped crack under harmonic torsion. ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik, 99(8), e201800193.

4. Mykhas’kiv, V. V., Zhbadynskyi, I. Y., & Zhang, C. (2019). On propagation of time-harmonic elastic waves through a double-periodic array of penny-shaped cracks. European Journal of Mechanics - A/Solids, 74, 68–77.

5. Zhbadynskyi, I. Y., & Mykhas’kiv, V. V. (2018). Acoustic filtering properties of 3D elastic metamaterials structured by crack-like inclusions. Proceedings of the International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 54–59.