Assist. Prof. Dr. Reem Abdullah Sadan Aljethi | Differentiation equation | Best Researcher Award

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi | Differentiation equation | Best Researcher Award

Associate Professor | Imam Mohammad Ibn Saud Islamic University | Saudi Arabia

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi is an accomplished scholar in Applied Mathematics whose expertise lies prominently in the study and advancement of Differentiation Equation systems. Her academic journey, including a Doctor of Philosophy from Universiti Putra Malaysia and earlier degrees from King Saud University, shaped her deep engagement with Differentiation Equation models and fractional calculus. With professional experience as a Lecturer, Vice Dean, and currently an Associate Professor at Imam Mohammad Ibn Saud Islamic University, she has significantly contributed to teaching, research, and academic administration. Her research explores fractional Differentiation Equation formulations, Lévy stochastic processes, and applications in financial and physical systems. Her Q1-ranked publications in journals like Mathematics and Chaos, Solitons & Fractals highlight her command of complex Differentiation Equation frameworks. Recognized through her participation in international conferences and leadership programs, she exhibits strong analytical and computational skills, particularly in MATLAB and mathematical modeling. Her dedication to the Differentiation Equation field continues to influence emerging studies in nonlinear systems, fractional models, and applied mathematics. Overall, Assist. Prof. Dr. Reem Abdullah Sadan Aljethi’s scholarly path exemplifies excellence, innovation, and leadership in the global study of Differentiation Equation research and its expanding interdisciplinary applications.

Profiles: Google Scholar | ORCID

Featured Publications

1. Aljethi, R. A., & Kılıçman, A. (2022). Financial applications on fractional Lévy stochastic processes. Fractal and Fractional, 6(5), 278.

2. Aljethi, R. A., & Kılıçman, A. (2023). Analysis of fractional differential equation and its application to realistic data. Chaos, Solitons & Fractals, 171, 113446.

3. Aljethi, R. A., & Kılıçman, A. (2023). Derivation of the fractional Fokker–Planck equation for stable Lévy with financial applications. Mathematics, 11(5), 1102.

4. Aljedhi, R. A., & Kılıçman, A. (2020). Fractional partial differential equations associated with Lévy stable process. Mathematics, 8(4), 508.

5. Ejaz Hussain, U. Y., Aljethi, R. A., & Farooq, K. (2025). Optical multi-peakon dynamics in the fractional cubic–quintic nonlinear pulse propagation model using a novel integral approach. Fractal and Fractional, 9(10), 631.

Dr. Bahadir Kopcasiz | Computational Methods | Best Researcher Award

Dr. Bahadir Kopcasiz | Computational Methods | Best Researcher Award

Assistant Professor | Istanbul Gelisim University | Turkey

Dr. Bahadir Kopcasiz is an accomplished academic whose expertise centers on Computational Methods, with strong emphasis on nonlinear partial differential equations, soliton theory, symbolic and semi-analytical analysis, and advanced mathematical modeling. He earned his Ph.D. in Mathematics from Bursa Uludag University, preceded by a Master’s in Mathematics from Yeditepe University and a Bachelor’s from Karadeniz Technical University, building a solid foundation for his contributions in Computational Methods. Currently serving as an Assistant Professor at Istanbul Gelisim University, he actively teaches courses such as Differential Equations, Statistics, Probability, and Numerical Analysis, integrating Computational Methods into both undergraduate and graduate programs. His research primarily focuses on soliton solutions in nonlinear Schrödinger-type systems, dynamical structures in quantum physics, and the development of innovative Computational Methods to study complex dynamical systems, with numerous publications in high-impact journals including Archives of Computational Methods in Engineering, Nonlinear Dynamics, and Symmetry. He has also presented extensively at international conferences, showcasing advancements in Computational Methods for applied physics and engineering. Among his recognitions, he received the Best Researcher Award at the International Research Awards on Composite Materials and academic incentive awards from Istanbul Gelisim University, which highlight his outstanding scholarly contributions in Computational Methods. His research skills are distinguished by mastery of symbolic computation, semi-analytical modeling, and integration of Computational Methods with machine learning for dynamic system optimization, as evidenced by his involvement in national projects. In conclusion, Dr. Bahadir Kopcasiz exemplifies excellence in academia through his dedication to advancing Computational Methods, innovative problem-solving, impactful publications, and mentorship, establishing himself as a valuable contributor to mathematics, physics, and engineering research. His Google Scholar citations 337, h-index 12, i10-index 14, showcasing measurable research impact.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kopçasız, B., & Yaşar, E. (2022). The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms. Journal of Optics, 1–15.

2. Kopçasız, B., & Yaşar, E. (2022). Novel exact solutions and bifurcation analysis to dual-mode nonlinear Schrödinger equation. Journal of Ocean Engineering and Science.

3. Kopçasız, B., & Yaşar, E. (2024). Dual-mode nonlinear Schrödinger equation (DMNLSE): Lie group analysis, group invariant solutions, and conservation laws. International Journal of Modern Physics B, 38(02), 2450020.

4. Kopçasız, B. (2024). Qualitative analysis and optical soliton solutions galore: Scrutinizing the (2+1)-dimensional complex modified Korteweg–de Vries system. Nonlinear Dynamics, 112(23), 21321–21341.

5. Kopçasız, B., Seadawy, A. R., & Yaşar, E. (2022). Highly dispersive optical soliton molecules to dual-mode nonlinear Schrödinger wave equation in cubic law media. Optical and Quantum Electronics, 54(3), 194.

Dr. Prity Kumari | Mathematics | Women Researcher Award

Dr. Prity Kumari | Mathematics | Women Researcher Award

PhD scholar | National Institute of Technology | India

Dr. Prity Kumari is an accomplished researcher in Mathematics with expertise in graph theory, combinatorics, cryptography, wireless sensor networks, and machine learning, demonstrating a strong academic and professional foundation through advanced studies and significant teaching experience in engineering mathematics, numerical methods, and discrete mathematics. Her doctoral work focused on the application of combinatorial design in wireless sensor networks, reflecting her depth in both theoretical and applied Mathematics. She has published impactful research in reputed SCIE and Q1/Q2 journals, contributing to key areas like group key management, cryptographic security, and re-keying prediction models using Mathematics-driven combinatorial and machine learning approaches. With fellowships, merit-based scholarships, and active participation in national-level workshops on post-quantum cryptography, cyber security, and Mathematics for machine learning, she has broadened her expertise and collaborative exposure. Dr. Prity Kumari has also enriched her professional skills through roles as a Mathematics faculty and teaching assistant, guiding learners in foundational and advanced topics of Mathematics. Her research skills highlight proficiency in combinatorial design, cryptographic applications, algorithmic development, and predictive modeling, aligning with cutting-edge directions in Mathematics and computer science. Awards, honors, and fellowships further strengthen her academic profile, demonstrating excellence and commitment. Beyond research, she engaged in leadership roles like hostel representative, reflecting organizational and interpersonal abilities. In conclusion, Dr. Prity Kumari embodies a Mathematics scholar whose contributions interconnect combinatorial structures, cryptographic security, and applied computational methods, making her a valuable academic and researcher with strong potential for further advancing the field of Mathematics.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kumari, P., & Singh, K. R. (2024). Re-keying analysis in group key management of wireless sensor networks. Cryptography and Communications, 16(3), 665–677.

2. Mandal, R. K. P. K. N. R. D. S. S. K. (2024). Experimental comparison of pool boiling characteristics between CNT, GO, and CNT + GO-coated copper substrate. Heat Transfer. Advance online publication.

3. Kumar, P. K. K. R. S. R. (2025). Stacking ensemble algorithm to predict re-keying in group key management. Arabian Journal for Science and Engineering, 1–15.

4. Pegu, J., Singh, K. R., Kumari, P., & Mishra, V. N. (2025). Decomposition of corona graph. Filomat, 39(10), 3321–3328.

5. Kumari, P., & Singh, K. R. (2025). Re-keying in group key management for wireless sensor network using nested balanced incomplete block designs. IETE Journal of Research, 1–13.

Dr. Akinbo Bayo Johnson | Mathematics | Best Researcher Award

Dr. Akinbo Bayo Johnson | Mathematics | Best Researcher Award

Senior Lecturer | Federal College of Education, Abeokuta, Nigeria and Postdoctoral researcher at Universidade Federal De Itajuba | Brazil 

Dr. Akinbo Bayo Johnson is a distinguished scholar in applied mathematics whose expertise spans fluid dynamics, entropy generation, nano and non-Newtonian fluids, thermodynamic models, and computational mathematics. With a Ph.D. in applied mathematics and solid foundations from advanced studies in mathematics, his academic journey has been dedicated to advancing theoretical and applied aspects of mathematics. He has served as a lecturer, senior researcher, and currently contributes as a postdoctoral researcher in Brazil, showcasing professional experience across teaching, supervision, and international research collaborations. His research interests are deeply rooted in mathematics, where he explores bioconvectional fluids, heat and mass transfer, and mathematical modeling, all of which have resulted in impactful publications in high-ranking journals. Dr. Akinbo has been honored with awards such as the Best Paper Award, Tetfund Postdoctoral Award, and multiple recognitions from scientific associations, reflecting his excellence in mathematics-driven research. His professional memberships in the Mathematical Association of Nigeria and related bodies further highlight his integration within the mathematics community. Skilled in MATHEMATICA programming and computational approaches, he has applied mathematics extensively in solving differential equations, thermodynamic systems, and fluid mechanics problems. His career demonstrates consistent contributions as a reviewer for international journals, strengthening the dissemination of mathematical knowledge. Overall, Dr. Akinbo Bayo Johnson embodies a commitment to mathematics through education, research, and professional service, and his dedication ensures that mathematics remains a vital tool in addressing complex scientific challenges while inspiring the next generation of mathematics researchers.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. Akinbo, B. J., & Olajuwon, B. I. (2023). Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction. International Journal of Modelling and Simulation, 43(2), 87–100.

2. Akinbo, B. J., & Olajuwon, B. I. (2021). Impact of radiation and chemical reaction on stagnation-point flow of hydromagnetic Walters' B fluid with Newtonian heating. International Communications in Heat and Mass Transfer, 121, 105115.

3. Akinbo, B. J., & Olajuwon, B. I. (2019). Homotopy analysis investigation of heat and mass transfer flow past a vertical porous medium in the presence of heat source. International Journal of Heat & Technology, 37(3).

4. Akinbo, B. J., & Olajuwon, B. I. (2021). Radiation and thermal-diffusion interaction on stagnation-point flow of Walters' B fluid toward a vertical stretching sheet. International Communications in Heat and Mass Transfer, 126, 105471.

5. Akinbo, B. J., & Olajuwon, B. I. (2021). Heat transfer analysis in a hydromagnetic Walters' B fluid with elastic deformation and Newtonian heating. Heat Transfer, 50(3), 2033–2048.

6. Akinbo, B. J., Faniran, T., & Ayoola, E. O. (2015). Numerical solution of stochastic differential equations. International Journal of Advanced Research in Science, Engineering and Technology.

7. Akinbo, B. J., & Olajuwon, B. I. (2019). Heat and mass transfer in magnetohydrodynamics (MHD) flow over a moving vertical plate with convective boundary condition in the presence of thermal radiation. Sigma Journal of Engineering and Natural Sciences, 37(3), 1031–1053.

8. Akinbo, B. (2021). Influence of convective boundary condition on heat and mass transfer in a Walters’ B fluid over a vertical stretching surface with thermal-diffusion effect. Journal of Thermal Engineering, 7(7), 1784–1796.

9. Akinbo, B. J., & Olajuwon, B. I. (2019). Convective heat and mass transfer in electrically conducting flow past a vertical plate embedded in a porous medium in the presence of thermal radiation and thermo diffusion. Computational Thermal Sciences: An International Journal, 11(4).

10. Akinbo, B. J., & Olajuwon, B. I. (2025). Significance of Cattaneo-Christov heat flux model and heat generation/absorption with chemical reaction in Walters’ B fluid via a porous medium in the presence of Newtonian heating. International Journal of Modelling and Simulation, 45(1), 137–146.

Dr. Suliman Khan | Numerical Analysis | Best Researcher Award

Dr. Suliman Khan | Numerical Analysis | Best Researcher Award

Postdoctoral Fellow at Nanjing University of Aeronautics and Astronautics | China

Numerical Analysis defines the foundation of Dr. Suliman Khan’s academic journey. His summary reflects a deep commitment to exploring the complexities of Numerical Analysis in both theoretical and applied domains. With a focus on highly oscillatory problems and physics-informed models, he uses Numerical Analysis as a tool to solve challenging equations. He integrates Numerical Analysis with machine learning, structural mechanics, and PDEs modeling, creating innovative solutions to real-world problems. His vision aligns Numerical Analysis research with education, fostering critical thinking and inspiring future mathematicians. This summary illustrates how Numerical Analysis serves as the bridge between computational advancements and practical applications, enabling continuous growth in modern scientific computing, engineering collaborations, and advanced mathematical problem-solving.

Professional Profiles 

Google Scholar Profile | ORCID Profile

Education 

Dr. Suliman Khan’s education centers around mastering the field of Numerical Analysis through rigorous training and research. His academic progression reflects a sustained focus on Numerical Analysis in applied mathematics, computational mathematics, and scientific computing. He pursued advanced degrees emphasizing Numerical Analysis and integral equations with oscillatory kernels, deepening his expertise in solving complex integrals. His thesis projects and research topics demonstrate advanced Numerical Analysis techniques, bridging oscillatory integral computation with practical boundary element methods. This education path builds the analytical foundation necessary for solving PDEs, developing innovative algorithms, and contributing to global Numerical Analysis research communities. By integrating theoretical understanding with computational practice, his academic training stands as a model for excellence in Numerical Analysis education.

Experience 

Dr. Suliman Khan’s professional experience reflects an application-driven approach to Numerical Analysis across international academic and research environments. Through postdoctoral fellowships, he enhanced Numerical Analysis techniques for aerospace structures and advanced computational modeling. He engaged in teaching roles, conveying Numerical Analysis principles to undergraduate and postgraduate students, guiding them in applying Numerical Analysis methods to solve mathematical and engineering problems. His responsibilities included supervising projects, delivering specialized lectures, and contributing to research teams developing Numerical Analysis-based simulations. This combination of teaching, research, and collaboration allowed him to evolve Numerical Analysis applications in boundary integral equations, structural mechanics, and scientific computing. His professional journey continues to strengthen global connections while advancing Numerical Analysis research and its innovative applications.

Research Interest 

Dr. Suliman Khan’s research interest revolves around extending the frontiers of Numerical Analysis to address modern mathematical and engineering challenges. His primary focus includes highly oscillatory problems, integral equations, and PDE modeling through Numerical Analysis techniques. He investigates physics-informed neural networks (PINNs), using Numerical Analysis to integrate computational intelligence with differential equations. His interests span radial basis functions, structural mechanics modeling, and Euler-Bernoulli and Timoshenko beam simulations, all rooted in Numerical Analysis frameworks. He explores computational strategies that combine theoretical precision with practical scalability, ensuring Numerical Analysis remains a driving force in scientific discovery. These research directions ensure Numerical Analysis serves not only academic curiosity but also industry-relevant innovation, bridging mathematical rigor with real-world applications.

Award and Honor

Recognition of Dr. Suliman Khan’s contributions to Numerical Analysis is reflected in various awards and honors. He received prestigious scholarships and appreciation certificates acknowledging his dedication to Numerical Analysis research and teaching. His leadership roles in academic networks highlight his commitment to promoting Numerical Analysis as an essential discipline within mathematics and engineering. His efforts to integrate Numerical Analysis into computational science have earned respect among peers globally. Through continuous involvement in high-impact projects, he represents a model of professional integrity and scholarly excellence. These honors validate his vision of advancing Numerical Analysis beyond theoretical studies, contributing significantly to applied mathematics, computational modeling, and collaborative problem-solving in multidisciplinary scientific environments.

Research Skill

Dr. Suliman Khan demonstrates advanced research skills in Numerical Analysis, combining theoretical insights with computational innovation. He develops efficient algorithms for highly oscillatory integrals, applying Numerical Analysis methods to solve integral equations and boundary element problems. His skills extend to machine learning integration, where Numerical Analysis underpins physics-informed neural networks for solving PDEs. He is proficient in mathematical programming languages, simulation environments, and model validation frameworks that rely on Numerical Analysis accuracy. He applies rigorous error analysis, stability checks, and convergence testing, ensuring Numerical Analysis results meet scientific standards. These skills collectively enable groundbreaking contributions to both mathematics and engineering, proving how Numerical Analysis serves as a foundation for modern computational problem-solving.

Publication Top Notes 

Title: Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation
Year: 2021
Citation: 82

Title: Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid
Year: 2021
Citation: 69

Title: Identifying the potentials for charge transport layers free np homojunction-based perovskite solar cells
Year: 2022
Citation: 24

Title: Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells
Year: 2021
Citation: 22

Title: A well-conditioned and efficient Levin method for highly oscillatory integrals with compactly supported radial basis functions
Year: 2021
Citation: 20

Title: Approximation of Cauchy-type singular integrals with high frequency Fourier kernel
Year: 2021
Citation: 19

Title: On the evaluation of highly oscillatory integrals with high frequency
Year: 2020
Citation: 15

Title: A dual interpolation boundary face method with Hermite-type approximation for elasticity problems
Year: 2020
Citation: 13

Title: An Accurate Computation of Highly Oscillatory Integrals with Critical Points
Year: 2018
Citation: 11

Title: A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation
Year: 2021
Citation: 10

Title: Approximation of oscillatory Bessel integral transforms
Year: 2023
Citation: 9

Title: Numerical Investigation of the Fredholm Integral Equations with Oscillatory Kernels Based on Compactly Supported Radial Basis Functions
Year: 2022
Citation: 6

Title: Numerical approximation of Volterra integral equations with highly oscillatory kernels
Year: 2024
Citation: 5

Title: On the evaluation of Poisson equation with dual interpolation boundary face method
Year: 2021
Citation: 5

Title: A new implementation of DRM with dual interpolation boundary face method for Poisson equation
Year: 2020
Citation: 5

Title: Interpolation based formulation of the oscillatory finite Hilbert transforms
Year: 2022
Citation: 4

Title: On the Convergence Rate of Clenshaw–Curtis Quadrature for Jacobi Weight Applied to Functions with Algebraic Endpoint Singularities
Year: 2020
Citation: 4

Title: On Numerical Computation of Oscillatory Integrals and Integral Equations with Oscillatory Kernels
Year: 2021
Citation: 3

Title: A multiscale domain decomposition approach for parabolic equations using expanded mixed method
Year: 2022
Citation: 2

Title: On Computation of Bessel and Airy Oscillatory Integral Transforms
Year: 2025
Citation: 1

Conclusion

The academic and professional path of Dr. Suliman Khan underscores the transformative power of Numerical Analysis in modern science. His contributions demonstrate how Numerical Analysis enables theoretical breakthroughs and practical engineering solutions. Through teaching, research, and collaboration, he advances Numerical Analysis from abstract computation to actionable methodologies. His dedication ensures Numerical Analysis remains at the heart of applied mathematics, computational modeling, and machine learning integration. The conclusion of this narrative reflects his commitment to leveraging Numerical Analysis for global scientific progress. His vision inspires future mathematicians to embrace Numerical Analysis not just as a field of study but as a dynamic, problem-solving tool for advancing human knowledge.

Assist. Prof. Dr. J. Prakash | Mathematical Physics | Best Researcher Award

Assist. Prof. Dr. J. Prakash | Mathematical Physics | Best Researcher Award

Assistant Professor at Avvaiyar Government College for Women | India

Assist. Prof. Dr. J. Prakash is a highly accomplished academic in Mathematical Physics with a strong dedication to research, teaching, and innovation. His expertise in Mathematical Physics spans fluid dynamics, partial differential equations, numerical analysis, and fractional differential equations. With years of valuable academic service, he has contributed extensively to Mathematical Physics education and research through advanced theoretical and computational studies. His role as an educator and mentor has strengthened Mathematical Physics understanding among students and peers. He has published numerous impactful papers in Mathematical Physics journals and participated in national and international academic events. His contributions reflect a deep commitment to the advancement of Mathematical Physics as both a discipline and a tool for addressing complex real-world challenges.

Professional Profiles

Scopus Profile | ORCID Profile

Education 

Assist. Prof. Dr. J. Prakash holds an exceptional academic foundation built upon a passion for Mathematical Physics. His journey began with undergraduate and postgraduate degrees focused on Mathematics, providing a strong basis for Mathematical Physics exploration. He pursued higher research qualifications, including an M.Phil. and Ph.D., where Mathematical Physics concepts played a central role in his investigations of fluid dynamics, nanofluids, and external effects on peristaltic motion. His education reflects a deliberate integration of Mathematical Physics with practical and theoretical problem-solving. Through rigorous academic training, he has developed deep analytical, numerical, and computational skills, enabling significant contributions to Mathematical Physics. His academic path highlights a commitment to excellence and a lifelong dedication to advancing Mathematical Physics knowledge.

Experience 

Assist. Prof. Dr. J. Prakash brings extensive professional experience in Mathematical Physics through years of teaching and research across multiple institutions. His career includes academic roles that integrate Mathematical Physics in engineering and applied sciences curricula. He has worked on projects applying Mathematical Physics to fluid dynamics, heat transfer, and nanotechnology-driven systems, providing real-world insights to theoretical frameworks. His academic journey includes positions of responsibility, mentorship, and leadership, where Mathematical Physics principles have guided curriculum development, research supervision, and interdisciplinary collaboration. He has also acted as a resource person, technical session chair, and contributor to academic quality programs, ensuring Mathematical Physics remains at the forefront of innovative scientific education and research excellence in institutional and broader academic contexts.

Research Interest 

Assist. Prof. Dr. J. Prakash has diverse research interests rooted in Mathematical Physics, focusing on advanced fluid dynamics, heat and mass transfer, nanofluid systems, and electro-magneto-hydrodynamics. His Mathematical Physics studies explore both theoretical modeling and computational simulations, revealing novel insights into peristaltic motion, fractional differential equations, and complex flow behavior. The integration of Mathematical Physics with emerging technologies such as energy systems, biomedical flows, and smart fluidic devices underscores the practical relevance of his work. By addressing contemporary challenges through Mathematical Physics-based problem-solving, his research provides pathways to technological innovation. His efforts strengthen the link between fundamental Mathematical Physics theory and applied sciences, contributing to academic growth and industrial advancements simultaneously in innovative and impactful ways.

Award and Honor

Assist. Prof. Dr. J. Prakash has received multiple awards and honors for his contributions to Mathematical Physics, reflecting international recognition of his impactful research and academic excellence. His recognition as one of the top 2% scientists globally highlights his exceptional Mathematical Physics achievements and influential publications. He has been trusted with responsibilities such as examination supervision, technical session chairing, and academic board memberships, showcasing leadership in Mathematical Physics communities. Invitations as a resource person in seminars and conferences further demonstrate respect for his Mathematical Physics expertise. His awards validate his dedication to expanding Mathematical Physics knowledge while inspiring peers and students. These honors collectively confirm his enduring influence on the progress of Mathematical Physics across diverse academic and practical fields.

Research Skill

Assist. Prof. Dr. J. Prakash possesses exceptional research skills in Mathematical Physics, combining theoretical analysis, computational modeling, and interdisciplinary problem-solving. His Mathematical Physics research integrates advanced mathematical techniques with practical engineering and scientific challenges. Skilled in MATLAB, MATHEMATICA, and MAPLE, he applies computational tools to complex Mathematical Physics systems, enabling accurate simulation and prediction of phenomena. His expertise includes analytical derivation, stability analysis, and optimization within Mathematical Physics frameworks. By translating sophisticated Mathematical Physics models into real-world solutions, he contributes to technological innovation. His research proficiency extends to collaborative projects, publications, and mentoring, fostering future scholars capable of advancing Mathematical Physics further. His methodological precision ensures impactful and reproducible results, strengthening the reliability and scope of Mathematical Physics research.

Publication Top Notes 

Title: Computation of magnetohydrodynamic electro-osmotic modulated rotating squeezing flow with zeta potential effects
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Authors: Balaji, R.; Prakash, J.; Tripathi, Dharmendra; Beg, O. Anwar
Year: 2022

Title: Electroosmotic modulated unsteady squeezing flow with temperature-dependent thermal conductivity, electric and magnetic field effects
Journal: Journal of Physics: Condensed Matter
Authors: Prakash, J.; Tripathi, Dharmendra; Beg, O. Anwar; Sharma, Ravi Kumar
Year: 2022

Title: Impact of the electromagnetic flow of an MHD Casson fluid over an oscillating porous plate
Journal: Heat Transfer
Authors: Rajaram, Vijayaragavan; Varadharaj, Bharathi; Jayavel, Prakash
Year: 2022

Title: Insight into Newtonian fluid flow and heat transfer in vertical microchannel subject to rhythmic membrane contraction due to pressure gradient and buoyancy forces
Journal: International Journal of Heat and Mass Transfer
Authors: Bhandari, D. S.; Tripathi, Dharmendra; Prakash, J.
Year: 2022

Title: Numerical analysis of electromagnetic squeezing flow through a parallel porous medium plate with impact of suction/injection
Journal: Waves in Random and Complex Media
Authors: Jayavel, Prakash; Katta, Ramesh; Lodhi, Ram Kishun
Year: 2022

Title: Tangent hyperbolic non-Newtonian radiative bioconvection nanofluid flow from a bi-directional stretching surface with electro-magneto-hydrodynamic, Joule heating and modified diffusion effects
Journal: The European Physical Journal Plus
Authors: Prakash, J.; Tripathi, Dharmendra; Akkurt, Nevzat; Beg, O. Anwar
Year: 2022

Title: Thermo-electrokinetic rotating non-Newtonian hybrid nanofluid flow from an accelerating vertical surface
Journal: Heat Transfer
Authors: Jayavel, Prakash; Tripathi, Dharmendra; Beg, O. Anwar; Tiwari, Abhishek Kumar; Kumar, Rakesh
Year: 2022

Title: A study of electro-osmotic and magnetohybrid nanoliquid flow via radiative heat transfer past an exponentially accelerated plate
Journal: Heat Transfer
Authors: Rajaram, Vijayaragavan; Varadharaj, Bharathi; Jayavel, Prakash
Year: 2021

Title: Heat and mass transfer effect of a Magnetohydrodynamic Casson fluid flow in the presence of inclined plate
Journal: Indian Journal of Pure and Applied Physics
Authors: Vijayaragavan, R.; Bharathi, V; Prakash, J.
Year: 2021

Title: Impact of electroosmotic flow on a Casson fluid driven by chemical reaction and convective boundary conditions
Journal: Heat Transfer
Authors: Rajaram, Vijayaragavan; Varadharaj, Bharathi; Jayavel, Prakash
Year: 2021

Conclusion

Assist. Prof. Dr. J. Prakash exemplifies excellence in Mathematical Physics through consistent contributions to education, research, and innovation. His dedication to Mathematical Physics has produced impactful publications, guided students, and advanced interdisciplinary collaboration. Through his expertise, Mathematical Physics has been applied to solve complex scientific and engineering problems, bridging theoretical mathematics with practical technologies. His academic journey reflects a lifelong commitment to expanding the horizons of Mathematical Physics while maintaining its relevance to evolving industrial and academic needs. His recognition among top global scientists underscores the significance of his Mathematical Physics achievements, positioning him as a leader whose work continues to inspire, influence, and drive advancements in the interconnected realms of mathematics, physics, and applied sciences.

Dr. Derya Bayril Aykut | Mathematics | Best Researcher Award

Dr. Derya Bayril Aykut | Mathematics | Best Researcher Award

Research Assistant at Dokuz Eylül University, Turkey

Dr. Derya Bayril Aykut has a distinguished academic profile rooted deeply in Mathematics, contributing significantly to advanced Mathematics research. Her expertise spans pure Mathematics, applied Mathematics, and innovative Mathematics-based methodologies. She has developed original Mathematics theories in geometry and kinematics while applying Mathematics to interdisciplinary fields. Mathematics is central to her academic publications, presentations, and teaching philosophy. With Mathematics as a core foundation, she actively engages in Mathematics communities, contributing to Mathematics conferences, Mathematics seminars, and Mathematics collaborations. Mathematics informs every stage of her scholarly work, from problem formulation to solution development. Her commitment to Mathematics extends beyond research, integrating Mathematics into student mentorship and academic service, reflecting a career entirely shaped by Mathematics excellence.

Professional Profile

Google Scholar

Education 

Dr. Derya Bayril Aykut’s educational journey is firmly anchored in Mathematics, with a doctoral degree in Mathematics and postgraduate specialization in Mathematics. She pursued Mathematics studies at renowned institutions, advancing her understanding of Mathematics theories, Mathematics applications, and Mathematics research techniques. Her doctoral work focused on the application of Mathematics to Lie group analysis and kinematics, demonstrating a mastery of Mathematics problem-solving. Through her education, Mathematics became the framework for her intellectual growth, allowing her to explore both theoretical Mathematics and applied Mathematics. Her continuous academic involvement in Mathematics ensures she stays updated on global Mathematics advancements. Education in Mathematics not only shaped her expertise but also reinforced her dedication to promoting Mathematics in teaching and scholarly projects.

Experience 

Dr. Derya Bayril Aykut’s professional experience reflects a continuous engagement with Mathematics in academia and research. She has taught Mathematics courses, including Calculus I and Calculus II, introducing students to foundational Mathematics concepts and advanced Mathematics techniques. Her professional contributions involve presenting Mathematics research at conferences, publishing Mathematics articles, and participating in Mathematics-focused scientific organizations. Mathematics informs her approach to problem-solving, enabling her to address complex challenges through Mathematics models. She collaborates internationally with Mathematics scholars to expand Mathematics knowledge and practical applications. Her career trajectory demonstrates a seamless integration of Mathematics in teaching, research, and service, ensuring Mathematics remains at the center of her professional identity, inspiring future Mathematics scholars through her academic contributions.

Research Interest 

Dr. Derya Bayril Aykut’s research interests lie within advanced Mathematics, including geometry, kinematics, and applications of Mathematics to physical systems. She investigates Mathematics frameworks for rigid-body motions, Lie group theory, and space kinematics, demonstrating the versatility of Mathematics in addressing real-world and abstract problems. Her work explores Mathematics methods in both theoretical Mathematics and applied Mathematics contexts, bridging pure Mathematics research with interdisciplinary studies. She emphasizes the role of Mathematics in modeling, simulation, and computational problem-solving. Her publications showcase Mathematics innovations that contribute to global Mathematics discourse. She is dedicated to exploring new Mathematics perspectives, ensuring her research remains relevant and impactful within the evolving landscape of Mathematics sciences and applications.

Award and Honor

Dr. Derya Bayril Aykut has received recognition for her contributions to Mathematics, reflecting her commitment to Mathematics advancement. Her achievements in Mathematics include publishing impactful Mathematics research, presenting Mathematics findings at prestigious Mathematics conferences, and receiving honors for excellence in Mathematics education and scholarship. Memberships in Mathematics associations further underline her leadership within the Mathematics community. She has been part of collaborative Mathematics projects recognized nationally and internationally. These awards and honors acknowledge her dedication to Mathematics progress and the dissemination of Mathematics knowledge. Each recognition strengthens her resolve to further integrate Mathematics into academia, research, and professional service, ensuring Mathematics remains a driving force in her academic career.

Research Skill

Dr. Derya Bayril Aykut possesses a broad range of Mathematics research skills, including theoretical Mathematics analysis, applied Mathematics modeling, and computational Mathematics simulations. She excels in Mathematics problem formulation, solution optimization using Mathematics techniques, and interpretation of Mathematics results. Her proficiency in advanced Mathematics tools and programming enhances her ability to work on complex Mathematics challenges. Skilled in both pure Mathematics and applied Mathematics, she bridges the gap between Mathematics theory and practice. Her expertise extends to writing Mathematics research papers, delivering Mathematics presentations, and leading Mathematics collaborations. These Mathematics skills allow her to contribute meaningfully to academic Mathematics discussions, producing high-quality Mathematics outputs recognized in the global Mathematics community.

Publication Top Notes

Title: On plane-symmetric rigid-body motions
Author: D Bayril, JM Selig
Journal: Journal of Geometry

Title: The geometry of line-symmetric rigid-body motions
Author: D Bayril, JM Selig
Journal: Differential Geometry and its Applications

Title: Lie Algebra Contributions to Instantaneous Plane Kinematics
Author: İ Karakılıç, DB Aykut
Journal: Ikonion Journal of Mathematics

Conclusion

Dr. Derya Bayril Aykut’s career is a testament to the transformative power of Mathematics, as every stage of her academic and professional life has been guided by Mathematics principles. From her Mathematics education to her Mathematics research, teaching, and publications, Mathematics serves as the foundation of her contributions to academia. Her dedication to Mathematics excellence is evident in her achievements, skills, and collaborations, all of which enhance the global Mathematics landscape. She continues to promote Mathematics through active participation in Mathematics communities and projects. Her legacy in Mathematics will inspire future generations of Mathematics scholars to embrace Mathematics as both a discipline and a lifelong pursuit.

Dr. Seungpyo Lee | Computational Methods | Best Researcher Award

Dr. Seungpyo Lee | Computational Methods | Best Researcher Award

Director at ILJIN Global, South Korea

Dr. Seungpyo Lee is an expert in computational methods with extensive research in computational methods for mechanical systems, especially in bearings. His focus lies in computational methods for finite element analysis, and he leads computational methods applications at ILJIN Global. Over the years, his work has demonstrated how computational methods enhance engineering outcomes. Dr. Seungpyo Lee utilizes computational methods in fatigue evaluation, stiffness prediction, and dynamic simulations. By implementing computational methods, he ensures accuracy, efficiency, and innovation. His leadership relies on computational methods to solve real-world mechanical challenges. Using computational methods, he fosters engineering advancements. Computational methods help define his professional profile. Through computational methods, Dr. Seungpyo Lee inspires others to pursue innovation via computational methods in research and development.

Professional Profile

Google Scholar

Education 

Dr. Seungpyo Lee pursued all his degrees in mechanical engineering from Hanyang University, specializing in computational methods, particularly computational methods used in finite element analysis. Throughout his education, computational methods were central to his learning, research, and thesis. His academic foundation was enriched by computational methods in structural analysis and mechanics. He became proficient in computational methods while working on real-time simulation projects. Computational methods were crucial in solving engineering problems. His graduate studies included extensive work on computational methods in applied mechanics. Computational methods supported his skill development and critical thinking. Dr. Lee explored advanced topics in computational methods, integrating computational methods into core engineering applications. His commitment to computational methods began early and shaped his entire academic path.

Experience 

Dr. Seungpyo Lee has applied computational methods throughout his career. At ILJIN Global, he leads the R&D Center's CAE team, where computational methods are a foundation of daily operations. His role includes integrating computational methods for mechanical simulations, design validation, and predictive maintenance. Dr. Lee manages teams that rely on computational methods to solve real-time problems. With computational methods, he evaluates bearing stiffness, friction, and fatigue. Computational methods allow his team to drive innovation and enhance product quality. His daily decisions are based on computational methods for simulation accuracy. Under his guidance, computational methods have transformed workflows. His experience reflects a deep understanding of computational methods. Dr. Lee continuously evolves professional practices using computational methods.

Research Interest 

Dr. Seungpyo Lee’s research interests revolve around computational methods for CAE applications. He uses computational methods to study bearing performance, fatigue life, and structural behavior. His current research includes computational methods applied in AI-driven simulations. Dr. Lee combines computational methods with machine learning and deep learning. These advanced computational methods improve prediction accuracy. He investigates how computational methods optimize mechanical design. His research also evaluates computational methods in modeling torque and stiffness. Using computational methods, he addresses industry challenges. He frequently publishes studies exploring new computational methods. His research goal is to expand computational methods in automated analysis. Dr. Lee constantly explores frontiers of computational methods, enriching the engineering field with innovative computational methods-based solutions.

Award and Honor

Dr. Seungpyo Lee’s achievements are grounded in his expertise in computational methods. He has earned recognition for applying computational methods in mechanical simulations. His work with computational methods has received industry-wide acclaim. Dr. Lee’s use of computational methods in predictive modeling led to significant product innovation. Honors were awarded based on his contributions to computational methods in CAE analysis. He has led numerous projects where computational methods were essential. These projects highlight his mastery of computational methods in real-world scenarios. His honors celebrate dedication to advancing computational methods. Computational methods are central to every accolade he receives. His reputation as a leader in computational methods continues to grow. Dr. Lee’s accomplishments underscore the power of computational methods.

Research Skill

Dr. Seungpyo Lee’s research skills are rooted in computational methods, especially in finite element modeling. He excels in applying computational methods for stress analysis, fatigue simulation, and AI integration. His problem-solving approach uses computational methods extensively. With a strong command of simulation tools, he implements computational methods in various projects. His skill set includes writing algorithms and customizing tools based on computational methods. Dr. Lee can assess results through computational methods and improve accuracy. He adapts computational methods to new technologies. His ability to apply computational methods in different domains showcases versatility. Dr. Lee develops strategies using computational methods to solve complex problems. His proficiency ensures that computational methods remain central to research and development practices.

Publication Top Notes 

Title: Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization method and Monte Carlo simulation
Authors: SP Lee, JW Jin, KW Kang
Journal: Renewable Energy

Title: Low and high cycle fatigue of automotive brake discs using coupled thermo-mechanical finite element analysis under thermal loading
Authors: MJ Han, CH Lee, TW Park, SP Lee
Journal: Journal of Mechanical Science and Technology

Title: Bearing life evaluation of automotive wheel bearing considering operation loading and rotation speed
Authors: SP Lee
Journal: Transactions of the Korean Society of Mechanical Engineers A

Title: Homogenization-based multiscale analysis for equivalent mechanical properties of nonwoven carbon-fiber fabric composites
Authors: H Lee, C Choi, J Jin, M Huh, S Lee, K Kang
Journal: Journal of Mechanical Science and Technology

Title: Distortion analysis for outer ring of automotive wheel bearing
Authors: SP Lee, BC Kim, IH Lee, YG Cho, YC Kim
Journal: Transactions of the Korean Society of Mechanical Engineers A

Title: Analysis for deformation behavior of multilayer ceramic capacitor based on multiscale homogenization approach
Authors: SP Lee, KW Kang
Journal: Journal of Mechanical Science and Technology

Title: The effect of outer ring flange concavity on automotive wheel bearings performance
Authors: S Lee, N Lee, J Lim, J Park
Journal: SAE International Journal of Passenger Cars - Mechanical Systems

Title: Structural design and analysis for small wind turbine blade
Authors: SP Lee, KW Kang, SM Chang, JH Lee
Journal: Journal of the Korean Society of Manufacturing Technology Engineers

Title: Deformation analysis of rubber seal assembly considering uncertainties in mechanical properties
Authors: SP Lee, KW Kang
Journal: Journal of Mechanical Science and Technology

Title: Fatigue analysis for automotive wheel bearing flanges
Authors: JW Jin, KW Kang, S Lee
Journal: International Journal of Precision Engineering and Manufacturing

Title: Life Evaluation of grease for ball bearings according to temperature, speed, and load changes
Authors: J Son, S Kim, BH Choi, S Lee
Journal: Tribology and Lubricants

Conclusion

Dr. Seungpyo Lee exemplifies leadership in computational methods across research, education, and industry. His consistent use of computational methods has advanced mechanical engineering practices. Whether in simulation, design, or research, computational methods are his core tool. Dr. Lee advocates for computational methods in problem-solving and innovation. Through team leadership and research, he advances computational methods. His knowledge of computational methods helps bridge academic theory and industrial practice. Dr. Lee’s influence ensures computational methods will remain integral to future developments. He continues to inspire others by promoting computational methods. His vision includes expanding computational methods to new frontiers. Dr. Lee's legacy will be closely tied to computational methods and their impact on engineering evolution.