Dr. Boris Wembe | Numerical Analysis | Research Excellence Award

Dr. Boris Wembe | Numerical Analysis | Research Excellence Award

Postdoctoral Researcher | Paderborn University | Germany

Dr. Boris Wembe is a distinguished applied mathematician whose research profile reflects strong international recognition in Numerical Analysis and advanced optimal control. His scholarly contributions emphasize Numerical Analysis in structure preserving algorithms, quantum control, geometric control, and partial differential equation constrained optimization, where Numerical Analysis plays a central methodological role. Through rigorous Numerical Analysis, he has developed efficient numerical schemes, high order integrators, and robust computational frameworks addressing complex control systems. His publication record includes peer reviewed articles in reputable international journals, demonstrating the sustained impact of Numerical Analysis on theoretical development and real world modeling. Active collaborations with researchers across europe and africa highlight his commitment to globally connected Numerical Analysis research. Beyond publications, his work supports scientific capacity building, mentoring, and outreach, reinforcing the societal relevance of Numerical Analysis in education, navigation, quantum technologies, and engineering applications. His research outcomes contribute to reliable simulations, decision making tools, and innovation driven by Numerical Analysis across interdisciplinary domains. Google Scholar profile of 51 Citations, 4 h index, 1 i10 index

Citation Metrics (Google Scholar)

51
41
31
21
11
0

51
Citations

4
h-index

1
i10-index

                           ■ Citations                           ■ h-index                 ■ i10-index

Featured Publications


A Zermelo navigation problem with a vortex singularity

ESAIM: Control, Optimisation and Calculus of Variations, 2021
Cited by 17


Singular versus boundary arcs for aircraft trajectory optimization in climbing phase

ESAIM: Mathematical Modelling and Numerical Analysis, 2023
Cited by 5


Minimum energy control of passive tracers advection in point vortices flow

APCA International Conference on Automatic Control and Soft Computing, 2020
Cited by 4

Dr. Muhammad Iqbal | Computational Methods | Research Excellence Award

Dr. Muhammad Iqbal | Computational Methods | Research Excellence Award

Associate Professor | Bacha Khan University | Pakistan

Dr. Muhammad Iqbal is a distinguished researcher whose scholarly profile reflects sustained excellence in chemistry with strong integration of Computational Methods in advanced scientific inquiry. His work demonstrates authoritative use of Computational Methods to analyze molecular systems, interpret coordination chemistry behavior, and enhance predictive accuracy, where Computational Methods consistently guide hypothesis development, data interpretation, and validation. Through extensive peer reviewed publications indexed in SCI and Scopus, he has contributed impactful knowledge supported by rigorous Computational Methods that strengthen reproducibility and translational relevance. His research output shows meaningful citation influence and international visibility, while Computational Methods enable collaborative alignment with interdisciplinary researchers and institutional partners. By applying Computational Methods to complex chemical challenges, his contributions advance analytical efficiency, resource optimization, and knowledge driven innovation with tangible societal and scientific benefits. His academic service and research dissemination reflect a commitment to quality, integrity, and global standards, with Computational Methods remaining central to methodology, collaboration, and impact across his scholarly endeavors. Google Scholar profile of 380 Citations, 13 h-index, 13 i10 index.

Citation Metrics (Google Scholar)

380
304
228
152
76
0

380
Citations

13
h-index

13
i10-index

                       ■ Citations                        ■ h-index                       ■ i10-index

Featured Publications

Prof. Qingna Li | Mathematics | Research Excellence Award

Prof. Qingna Li | Mathematics | Research Excellence Award

Professor | Beijing Institute of Technology | China

Prof. Qingna Li is widely recognized for her influential contributions to Mathematics, with her research consistently advancing the global understanding of optimization theory and computational methods within Mathematics. Her work integrates rigorous analytical frameworks in Mathematics with practical algorithmic design, resulting in high impact publications that strengthen interdisciplinary applications of Mathematics. She has produced an extensive body of research across leading international platforms, demonstrating strong visibility in Mathematics and sustained engagement with collaborative projects that rely heavily on mathematical modeling. Her expertise in Mathematics has supported innovative developments in optimization algorithms, numerical strategies, and data driven analytical tools that continue to influence scholars working across diverse areas connected to Mathematics. She has collaborated with multiple research groups and professional networks, further extending the societal relevance of Mathematics through contributions that support technology, engineering, and computational research communities. Her commitment to Mathematics is also reflected in her leadership within research teams and in mentoring emerging scholars who pursue advanced studies grounded in Mathematics. Her academic record highlights a strong publication profile and measurable research influence that underscores the growing global relevance of Mathematics in contemporary scientific inquiry. Google Scholar Profile Of Citations 492, h index 10, i10 index 11.

Citation Metrics (Google Scholar)

500
400
300
200
100
0

492

Citations

10

h-index

11

i10-index

                                ■ Citations (Blue)              ■ h-index (Red)            ■ i10-index (Green)

Featured Publications


A class of derivative-free methods for large-scale nonlinear monotone equations

IMA Journal of Numerical Analysis, 2011
Cited by 193


A semismooth Newton method for support vector classification and regression

Computational Optimization and Applications, 2019
Cited by 33


An efficient augmented Lagrangian method for support vector machine

Optimization Methods and Software, 2020
Cited by 22

Assoc. Prof. Dr. Keli Zheng | Mathematics | Research Excellence Award

Assoc. Prof. Dr. Keli Zheng | Mathematics | Research Excellence Award

Associate Professor | Northeast Forestry University | China

Assoc. Prof. Dr. Keli Zheng is a distinguished scholar whose work reflects a deep commitment to advancing mathematics through rigorous research, sustained publication activity and meaningful collaboration. With core expertise grounded in mathematics and its structural theories, the contributions of Assoc. Prof. Dr. Keli Zheng span mathematics related to Lie theory, modular Lie superalgebras, pseudo Riemannian superalgebras and mathematical physics, supported by more than thirty publications and extensive involvement in mathematics driven projects across national, provincial and institutional platforms. The research output demonstrates how mathematics can shape theoretical understanding while enabling new applications, with several studies published in respected mathematics journals and enriched by collaborations with researchers from multiple universities. Assoc. Prof. Dr. Keli Zheng has also integrated mathematics into teaching innovation by developing course materials and co authoring textbooks that strengthen mathematics education and support learners in abstract algebra and related fields. The societal impact of this work emerges from the sustained advancement of mathematics knowledge, the cultivation of young researchers and the strengthening of academic networks centered on mathematics inquiry. Through continued dedication to mathematics research, mathematics scholarship and mathematics dissemination, Assoc. Prof. Dr. Keli Zheng contributes significantly to the global development of mathematics. Scopus profile of 17 Citations, 12 Documents, 2 h index.

Citation Metrics (Scopus)

20
15
10
5
0

17
Citations

12
Documents

2
h-index

                                    ■ Citations (Blue)          ■ Documents (Red)            ■ h-index (Green)

Featured Publications

Dr. Muhammad Ahsan | Mathematics | Research Excellence Award

Dr. Muhammad Ahsan | Mathematics | Research Excellence Award

Assistant Professor | University of Swabi | Pakistan

Dr. Muhammad Ahsan is a distinguished scholar in Mathematics, recognized for his influential contributions to applied Mathematics, computational Mathematics, and numerical methods. His research spans high-order wavelet collocation techniques, multi-resolution algorithms, and advanced modeling approaches that address complex challenges in science and engineering through the rigorous application of Mathematics. As an active researcher in the global Mathematics community, he has authored more than thirty peer-reviewed publications in leading international journals, demonstrating consistent excellence in theoretical and computational Mathematics. Dr. Muhammad Ahsan has built a strong reputation for advancing innovative  methodologies in Mathematics, particularly in the areas of differential equations, inverse problems, nonlinear systems, and wavelet-based numerical frameworks. His collaborative work with researchers from multiple countries reflects his commitment to expanding the frontiers of Mathematics through interdisciplinary engagement. His impactful publications, extensive citation record, and sustained research productivity underscore the importance of his contributions to applied Mathematics and strengthen the global relevance of his work. In addition to his research achievements, he has played a pivotal role in academic leadership, contributing to institutional development, departmental responsibilities, and scholarly review activities for numerous international journals in Mathematics. His mentorship of graduate and undergraduate students further reflects his dedication to nurturing the next generation of professionals in Mathematics. Through his continuous pursuit of high-quality research, dedication to international collaboration, and commitment to advancing Mathematics, Dr. Muhammad Ahsan exemplifies scholarly excellence and global academic impact. His work remains a valuable asset to the broader scientific community, reinforcing the essential role of Mathematics in addressing modern scientific and technological challenges. Scopus profile of 591 Citations, 37 Documents, 16 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. High-order wavelet-based numerical algorithms for nonlinear singular Lane–Emden–Fowler equations: Applications to physical models in astrophysics. (2026). Astronomy and Computing.

2. A high-order Haar wavelet approach to solve differential equations of fifth-order with simple, two-point and two-point integral conditions. (2026). Applied Numerical Mathematics.

3. Enhanced resolution in solving first-order nonlinear differential equations with integral condition: A high-order wavelet approach. (2025). European Physical Journal Special Topics.

Prof. Dr. Jinju Sun | Computational Methods | Best Researcher Award

Prof. Dr. Jinju Sun | Computational Methods | Best Researcher Award

Professor | Xi'an Jiaotong University | China

Prof. Dr. Jinju Sun is a distinguished scholar in the School of Energy and Power Engineering at Xi’an Jiaotong University, renowned for her pioneering contributions to fluid mechanics, turbomachinery, and multiphase flow systems through advanced Computational Methods. Her educational journey spans cryogenic engineering to a PhD in turbomachinery and engineering mechanics, which laid the foundation for her expertise in Computational Methods applied to turbomachinery optimization, Lattice Boltzmann modeling, and Vortex Method simulations. Throughout her professional career, she has served as a researcher, lecturer, and professor, advancing research through numerous national and international collaborations emphasizing Computational Methods in fluid dynamics and green energy system design. She has received prestigious honors, including the Donald Julius Groen Prize and the Arthur Charles Main Award from the Institution of Mechanical Engineers (UK), in recognition of her outstanding achievements utilizing Computational Methods for energy system modeling and flow optimization. Her research interests include cryogenic liquid turbines, compressor instabilities, and innovative Computational Methods for fluid-structure interaction and multiphase flow behavior. She has authored numerous high-impact publications and holds multiple international patents that demonstrate her excellence in Computational Methods-based innovation. Prof. Dr. Jinju Sun’s research skills encompass CFD modeling, LBM, topology optimization, and Computational Methods-driven analysis for turbomachinery and green energy systems. In conclusion, her dedication to advancing Computational Methods in engineering has positioned her as a global leader driving innovation, sustainability, and scientific excellence in modern energy and power engineering.

Profile: ORCID

Featured Publications

1. Qu, Y., Sun, J., Song, P., & Wang, J. (2025). Enhancing efficiency and economic viability in Rectisol system with cryogenic liquid expander. Asia-Pacific Journal of Chemical Engineering.

2. Ge, Y., Peng, J., Chen, F., Liu, L., Zhang, W., Liu, W., & Sun, J. (2023). Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion. AIP Advances.

3. Fu, X., & Sun, J. (2023). Three-dimensional color-gradient lattice Boltzmann model for simulating droplet ringlike migration under an omnidirectional thermal gradient. International Journal of Thermal Sciences.

4. Song, P., Sun, J., Wang, S., & Wang, X. (2022). Multipoint design optimization of a radial-outflow turbine for Kalina cycle system considering flexible operating conditions and variable ammonia-water mass fraction. Energies.

5. Song, P., Wang, S., & Sun, J. (2022). Numerical investigation and performance enhancement by means of geometric sensitivity analysis and parametric tuning of a radial-outflow high-pressure oil–gas turbine. Energies.

Assoc. Prof. Dr. Krishna Pada Das | Mathematics | Best Researcher Award

Assoc. Prof. Dr. Krishna Pada Das | Mathematics | Best Researcher Award

Associate Professor | Mahadevananda Mahavidyalaya | India

Assoc. Prof. Dr. Krishna Pada Das, a distinguished scholar in Mathematics, currently serves as an Associate Professor in the Department of Mathematics at Mahadevananda Mahavidyalaya, Barrackpore. His academic journey includes a Bachelor’s and Master’s degree in Mathematical Science from Calcutta University and a Doctorate in Applied Mathematics from Jadavpur University, where he conducted pioneering research under the supervision of Prof. Joydev Chattopadhyay at the Indian Statistical Institute. With extensive professional experience as a researcher and educator, he has contributed significantly to the field of Mathematics through his exploration of eco-epidemiological models, nonlinear dynamics, and bifurcation theory. His Mathematics research primarily focuses on the dynamics of predator-prey systems, infectious disease modeling, and population ecology using advanced mathematical tools such as fractional calculus, diffusion, stochastic processes, and delay differential equations. Over the course of his Mathematics career, Assoc. Prof. Dr. Krishna Pada Das has published more than ninety high-impact Mathematics research papers and guided multiple Ph.D. candidates in applied and computational Mathematics. His notable Mathematics achievements include the ISI Research Award and clearing the SLET examination, recognizing his exceptional academic and research proficiency in Mathematics. His Mathematics skills encompass mathematical modeling, numerical simulation using MATLAB, and analytical techniques for stability and chaos control in biological systems. In conclusion, his Mathematics contributions have strengthened interdisciplinary research connecting ecology, epidemiology, and applied mathematics, solidifying his position as a prominent researcher. Google Scholar profile of 1840 Citations, 23 h-index, 38 i10 index.

Profile: Google Scholar

Featured Publications

1. Das, K., & Mukherjee, A. K. (2007). Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: Role of biosurfactants in enhancing. Journal of Applied Microbiology, 102(1), 195–203.

2. Dutta, S. K., Das, K., Ghosh, B., & Blackman, C. F. (1992). Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio‐frequency electromagnetic radiation. Bioelectromagnetics, 13(4), 317–322.

3. Soni, B. K., Das, K., & Ghose, T. K. (1982). Bioconversion of agro-wastes into acetone butanol. Biotechnology Letters, 4(1), 19–22.

4. Kooi, B. W., van Voorn, G. A. K., & Das, K. P. (2011). Stabilization and complex dynamics in a predator–prey model with predator suffering from an infectious disease. Ecological Complexity, 8(1), 113–122.

5. Das, C. R., Mondal, N. K., Aditya, P., Datta, J. K., Banerjee, A., & Das, K. (2012). Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian Journal of Experimental Biological Sciences, 3(1), 59–65.*

Sathya Arumugam Thirumalai | Computational Methods | Young Scientist Award

Mr. Sathya Arumugam Thirumalai | Computational Methods | Young Scientist Award

Mr. Sathya Arumugam Thirumalai | Indian Institute of Technology Roorkee | India

Mr. Sathya Arumugam Thirumalai is a highly motivated researcher whose work integrates Computational Methods with experimental nanomaterial science, emphasizing sustainability, environmental protection, and advanced detection technologies. His academic journey, from IIT Roorkee to TU Dresden, reflects an enduring commitment to merging experimental nanotechnology with Computational Methods for the synthesis and characterization of perovskite, MXene, and 2D materials. Mr. Sathya’s professional experience spans renowned institutions like IISc Bengaluru, BARC Mumbai, and IIT Roorkee, where he utilized Computational Methods in density functional theory (DFT) simulations, material modeling, and radiation detector design. His research, grounded in Computational Methods, has contributed to multiple journal publications addressing gas sensing, field emission, and radiation detection. He applies Computational Methods to optimize nanomaterial performance, enhance photonic properties, and improve the efficiency of radiation detectors. Recognized with several awards and fellowships, including the National Talent Search Fellowship and the Saxon Student Mobility Grant, he has demonstrated excellence in both theoretical and practical domains. His technical mastery extends to Python, MATLAB, COMSOL, and VASP, emphasizing his strength in applying Computational Methods across interdisciplinary fields. Mr. Sathya’s skill in Computational Methods enables him to bridge theoretical simulations with experimental validation, ensuring scientific precision and innovation. His collaborative engagements with global research groups highlight his leadership and cross-disciplinary adaptability. In conclusion, Mr. Sathya exemplifies how Computational Methods can revolutionize material science, fostering technological advancements that align with sustainability and human welfare.

Profiles: Google Scholar | ORCID

Featured Publications

1. Sathya, A. T., Jethawa, U., Sarkar, S. G., & Chakraborty, B. (2025). Pd-decorated MoSi₂N₄ monolayer: Enhanced nitrobenzene sensing through DFT perspective. Journal of Molecular Liquids, 427, 127310.

2. Sathya, A. T., Kandasamy, M., & Chakraborty, B. (2024). Strain induced nitrobenzene sensing performance of MoSi₂N₄ monolayer: Investigation from density functional theory. Surfaces and Interfaces, 55, 105386.

3. Sanyal, G., Vaidyanathan, A., Sathya, A. T., & Chakraborty, B. (2025). Efficient catechol sensing in newly synthesized 2D material Ti₂B MBene: Insights from density functional theory simulations. Langmuir, 41(33), 22525–22534.

4. Sathya, A. T., Sarkar, S. G., Bakhtsingh, R. I., & Mondal, J. (2024). Suppression of shielding effect of large area field emitter cathode in radio frequency gun environment. Physica Scripta, 99(12), 125301.

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Leading Scientific Researcher | Institute for Applied Problemss of Mechanics and Mathematics | Ukraine

Prof. Viktor Mykhas’kiv is a distinguished researcher at the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine. His academic achievements include a Doctor of Science in Physics and Mathematics and a professorship in Mechanics of Deformable Solids. His extensive expertise in Computational Methods spans across Computational Mechanics, Materials Science, Structural Mechanics, and Multiscale Mathematical Modeling. Through his pioneering work, he has applied Computational Methods to study wave propagation, metamaterials, and nanomechanics, advancing knowledge in multiple scattering theory. His research leadership in international collaborations under INTAS, STCU, DAAD, DFG, and Fulbright programs highlights his ability to integrate Computational Methods within global scientific frameworks. As a team leader and project manager, he has promoted innovative Computational Methods in the investigation of elastic metamaterials and complex lattice structures. He has published widely, authoring over seventy-six Scopus-indexed papers, two books, and contributing to editorial boards of international journals like Mathematical Methods and Physicomechanical Fields. His commitment to excellence in Computational Methods is reflected in his role as a member of the European Structural Integrity Society. He has also served as a visiting researcher in the USA and Germany, applying Computational Methods to solve advanced mechanical and physical problems. His awards and honors recognize his groundbreaking use of Computational Methods in applied mechanics and theoretical modeling. With remarkable research skills and professional integrity, Prof. Viktor Mykhas’kiv continues to contribute significantly to global scientific progress. Scopus profile of 474 Citations, 76 Documents, 14 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Stankevych, V. Z., & Mykhas’kiv, V. V. (2023). Intensity of dynamic stresses of longitudinal shear in a periodically layered composite with penny-shaped cracks. Journal of Mathematical Sciences, 269(2), 268–280.

2. Mykhas’kiv, V. V., & Stasyuk, B. M. (2021). Effective elastic moduli of short-fiber composite with sliding contact conditions at interfaces. Mechanics of Composite Materials, 57(6), 845–854.

3. Mykhas’kiv, V., & Stankevych, V. (2019). Elastodynamic problem for a layered composite with penny-shaped crack under harmonic torsion. ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik, 99(8), e201800193.

4. Mykhas’kiv, V. V., Zhbadynskyi, I. Y., & Zhang, C. (2019). On propagation of time-harmonic elastic waves through a double-periodic array of penny-shaped cracks. European Journal of Mechanics - A/Solids, 74, 68–77.

5. Zhbadynskyi, I. Y., & Mykhas’kiv, V. V. (2018). Acoustic filtering properties of 3D elastic metamaterials structured by crack-like inclusions. Proceedings of the International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 54–59.

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi | Differentiation equation | Best Researcher Award

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi | Differentiation equation | Best Researcher Award

Associate Professor | Imam Mohammad Ibn Saud Islamic University | Saudi Arabia

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi is an accomplished scholar in Applied Mathematics whose expertise lies prominently in the study and advancement of Differentiation Equation systems. Her academic journey, including a Doctor of Philosophy from Universiti Putra Malaysia and earlier degrees from King Saud University, shaped her deep engagement with Differentiation Equation models and fractional calculus. With professional experience as a Lecturer, Vice Dean, and currently an Associate Professor at Imam Mohammad Ibn Saud Islamic University, she has significantly contributed to teaching, research, and academic administration. Her research explores fractional Differentiation Equation formulations, Lévy stochastic processes, and applications in financial and physical systems. Her Q1-ranked publications in journals like Mathematics and Chaos, Solitons & Fractals highlight her command of complex Differentiation Equation frameworks. Recognized through her participation in international conferences and leadership programs, she exhibits strong analytical and computational skills, particularly in MATLAB and mathematical modeling. Her dedication to the Differentiation Equation field continues to influence emerging studies in nonlinear systems, fractional models, and applied mathematics. Overall, Assist. Prof. Dr. Reem Abdullah Sadan Aljethi’s scholarly path exemplifies excellence, innovation, and leadership in the global study of Differentiation Equation research and its expanding interdisciplinary applications.

Profiles: Google Scholar | ORCID

Featured Publications

1. Aljethi, R. A., & Kılıçman, A. (2022). Financial applications on fractional Lévy stochastic processes. Fractal and Fractional, 6(5), 278.

2. Aljethi, R. A., & Kılıçman, A. (2023). Analysis of fractional differential equation and its application to realistic data. Chaos, Solitons & Fractals, 171, 113446.

3. Aljethi, R. A., & Kılıçman, A. (2023). Derivation of the fractional Fokker–Planck equation for stable Lévy with financial applications. Mathematics, 11(5), 1102.

4. Aljedhi, R. A., & Kılıçman, A. (2020). Fractional partial differential equations associated with Lévy stable process. Mathematics, 8(4), 508.

5. Ejaz Hussain, U. Y., Aljethi, R. A., & Farooq, K. (2025). Optical multi-peakon dynamics in the fractional cubic–quintic nonlinear pulse propagation model using a novel integral approach. Fractal and Fractional, 9(10), 631.