Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Associate Professor | Isfahan University of Technology | Iran

Assoc. Prof. Dr. Mohammad Silani is a distinguished figure in Engineering research, widely recognized for his contributions to computational mechanics, multiscale material modeling, fracture mechanics, and advanced numerical simulations. With an extensive background in Engineering applications, his work integrates molecular dynamics, finite element analysis, stochastic modeling, and phase-field theory to address complex material behavior in composite and nanocomposite structures. His Engineering research extends across multiscale modeling, machine learning–assisted simulations, and high-fidelity experimentation, establishing him as a leading contributor to Engineering innovation in computational materials science. He has served in multiple advanced academic and scientific capacities, has supervised doctoral and postgraduate research, and has actively collaborated internationally with institutions and Engineering research groups across Europe, Asia, and Australia. His scholarly output reflects a strong Engineering foundation, comprising many high-impact journal publications, conference contributions, and collaborations that have advanced computational Engineering and numerical methodology. His work on nanostructures, wear modeling, fatigue crack propagation, and hydrogen embrittlement demonstrates a deep Engineering perspective in bridging theory, simulation, and physical behavior. As a reviewer for numerous international journals, his expertise supports the global Engineering community through critical evaluation and scientific refinement. His research continues to influence structural integrity, biomaterial mechanics, lattice optimization, composites Engineering, mechanical design, and simulation-driven material development at multi-scale and multi-physics levels. His sustained contributions to Engineering research, academic leadership, and scientific cooperation reflect a career dedicated to advancing knowledge, improving computational frameworks, and developing reliable Engineering tools for industrial and scientific application. His work stands as a reference point for emerging researchers in Engineering modeling and mechanical material characterization, highlighting precision, innovation, and impactful academic leadership in modern Engineering science. Google Scholar profile of 3041 Citations, 22 h-index, 32 i10-index.

Profile: Google Scholar

Featured Publications

1. Koupaei, F. B., Javanbakht, M., Silani, M., Mosallanejad, M. H., & Saboori, A. (2026). Mechanics-based phase-field model for directional microstructure evolution: Multiscale finite element simulation of IN718 in DED process. Computational Materials Science, 261, 114342.

2. Sabetghadam-Isfahani, A., Silani, M., Javanbakht, M., & others. (2025). Molecular dynamics analysis of temperature and shear stress effects on nickel bi-crystal amorphization. Iranian Journal of Chemistry and Chemical Engineering, e732047.

3. Varshabi, N., Jafari, M., Jamshidian, M., Silani, M., Thamburaja, P., & Rabczuk, T. (2025). Phase-field modeling of stressed grain growth in nanocrystalline metals. International Journal of Mechanical Sciences, 110951.

4. Saffari, M. M., Javanbakht, M., Silani, M., & Jafarzadeh, H. (2025). Stress analysis of nanostructures including nanovoids and inclusions based on nonlocal elasticity theory with different kernels. International Journal of Applied Mechanics, 17(6), 2550041.

5. Sabetghadam-Isfahani, A., Javanbakht, M., & Silani, M. (2025). Atomistic-informed phase-field modeling of edge dislocation evolution in Σ3, Σ9, and Σ19 silicon bi-crystals. Computational Materials Science, 254, 113893.