Dr. Xiaoguang Liu | Particle Experiments | Research Excellence Award

Dr. Xiaoguang Liu | Particle Experiments | Research Excellence Award

Associate Professor | University of Science and Technology Beijing | China

Dr. Xiaoguang Liu is a distinguished researcher whose work reflects a strong commitment to advancing materials science through the continuous integration of Particle Experiments that shape modern understanding of high temperature ceramics and catalytic systems. Dr. Xiaoguang Liu has built a research profile centered on the development of high temperature ceramic coatings designed for extreme operational environments, while also contributing to high efficiency catalysts applied in wastewater treatment, a field where Particle Experiments consistently guide both conceptual progress and practical outcomes. Through extensive engagement with Particle Experiments that support investigations of electron transfer mechanisms in Z scheme semiconductor catalysts, Dr. Xiaoguang Liu has strengthened fundamental knowledge and broadened technological applications across academic and industrial collaborations. With publications across journals indexed in global databases and contributions that extend to consultancy and industry oriented projects, Dr. Xiaoguang Liu has demonstrated how Particle Experiments reinforce the reliability, precision, and societal relevance of innovative research outputs. Editorial appointments further reflect scientific leadership shaped by meticulous Particle Experiments that validate results across catalytic and ceramic systems. Patents, authored works, and research projects also highlight the consistent integration of Particle Experiments as a methodological core that enhances the robustness of experimental design and the credibility of research conclusions. Professional engagements and collaborative activities continue to expand the impact of Particle Experiments within interdisciplinary frameworks, demonstrating sustained contributions to material enhancement, environmental improvement, and scientific advancement. With ongoing research inspired by Particle Experiments that support both theoretical insight and experimental validation, Dr. Xiaoguang Liu remains a significant contributor to globally relevant innovations. Scopus profile of 1,643 Citations, 54 Documents, 21 h index.

Profile: Scopus

Featured Publications

1. Synergistic design of a novel Z-Scheme M-r-MIL-88A(Fe)/Bi₅O₇I-OVs with Fe²⁺/Fe³⁺ and oxygen vacancies for high-efficiency peroxymonosulfate activation and pollutant degradation: Mechanisms and DFT calculation. Separation and Purification Technology. (2026).

2. Polyvinyl alcohol and methyl cellulose composite membrane for efficient degradation of methylene blue. Materials Chemistry and Physics. (2025).

3. Supramolecular perylene diimides for photocatalytic hydrogen production. (2025).

4. Research progress and development trends in the anti-oxidation mechanism and performance enhancement of uranium nitride as an accident-resistant nuclear fuel. Gongcheng Kexue Xuebao / Chinese Journal of Engineering. (2025).

5. Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation. International Journal of Minerals, Metallurgy and Materials. (2025).

Prof. Dr. Evangelos N. Gazis | Experimental Particle Physics | Best Researcher Award

Prof. Dr. Evangelos N. Gazis | Experimental Particle Physics | Best Researcher Award

Professor of Particle Physics | National Technical University of Athens | Greece

Prof. Dr. Evangelos N. Gazis, a distinguished scholar in Experimental Particle Physics, serves as a Professor at the National Technical University of Athens (NTUA) and holds guest professorships at CERN and Lund University. With a Scopus profile recording 4,942 citations, 108 documents, and an h-index of 24, his influence in the global Experimental Particle Physics community is profound. His extensive career integrates Experimental Particle Physics with nuclear, astro-particle, and accelerator physics, demonstrating a remarkable capacity for pioneering detector R&D, including gas detectors, micro-megas systems, and high-precision DAQ and control systems. Prof. Dr. Gazis has been instrumental in major CERN collaborations such as ATLAS, DELPHI, and CLIC, significantly contributing to the discovery of the Higgs boson and advancements in high-luminosity accelerator upgrades. His Experimental Particle Physics research extends into medical applications such as proton therapy and radioprotection, environmental and energy innovations, and cultural heritage preservation through nuclear technologies. As the Greek National Contact Physicist for multiple CERN collaborations and the Industrial Liaison Officer, he has fostered interdisciplinary partnerships between academia, industry, and government, demonstrating leadership in Experimental Particle Physics transfer and innovation. His contributions to education are equally remarkable, mentoring numerous students and promoting STEM engagement through ERASMUS+ initiatives that integrate Experimental Particle Physics into educational and technological frameworks. He has also authored monographs and co-authored over 1900 scientific papers, underscoring his lasting imprint on Experimental Particle Physics literature and global research dissemination. Prof. Dr. Gazis’s vision combines technical excellence with social and educational outreach, enhancing the societal relevance of Experimental Particle Physics across generations. His career stands as a benchmark of innovation, collaboration, and scientific integrity in Experimental Particle Physics, embodying professional excellence at an international level.

Profile: Scopus

Featured Publications

1. Simulation dosimetry studies for FLASH radiation therapy (RT) with ultra-high dose rate (UHDR) electron beam. (2024). Quantum Beam Science.

2. On the use of foam rubber for sealing applications. (2024). Tribology Letters.

3. Thermal diffusivity variation assessment on radio-frequency quadrupole Cu-OF copper due to proton irradiation. (2023). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

4. The HEV ventilator: At the interface between particle physics and biomedical engineering. (2022). Royal Society Open Science.

5. Methods used for gas tightness test and percent oxygen monitoring of the NSW Micromegas detectors of LHC-ATLAS experiment. (n.d.). Conference Paper.