Assoc. Prof. Dr. Osama Hussein Galal | Stochastic Fluid Dynamics | Excellence in Research

Assoc. Prof. Dr. Osama Hussein Galal | Stochastic Fluid Dynamics | Excellence in Research

Associated Professor | Fayoum University | Egypt

Assoc. Prof. Dr. Osama Hussein Galal is a distinguished academic specializing in Stochastic Fluid Dynamics, whose professional journey reflects exceptional expertise in Engineering Mathematics and Physics. His academic and research trajectory demonstrates profound engagement with Stochastic Fluid Dynamics in analyzing uncertainty quantification, fractional-order systems, and fluid flow modeling. Over his extensive academic tenure, he has served as an educator, researcher, consultant, and supervisor, contributing significantly to Stochastic Fluid Dynamics applications in non-Newtonian fluid analysis, stochastic differential equations, and advanced computational mechanics. His professional experience extends to engineering consultancy and structural design, where he integrated Stochastic Fluid Dynamics methodologies for enhanced prediction accuracy in complex engineering systems. Assoc. Prof. Dr. Osama Hussein Galal has guided numerous postgraduate dissertations focusing on Stochastic Fluid Dynamics and uncertainty modeling in power systems, beam analysis, and transmission lines. His research interest revolves around integrating Stochastic Fluid Dynamics with machine learning, renewable energy modeling, and fractional calculus applications. Recognized for his scholarly contributions, he has received several awards for excellence in teaching, research supervision, and scientific publications. His research skills encompass analytical modeling, stochastic simulation, and the mathematical treatment of Stochastic Fluid Dynamics in engineering contexts, establishing him as a leading voice in the field. Through his numerous publications in reputed international journals, he has advanced global understanding of Stochastic Fluid Dynamics and its engineering implications. His career exemplifies the fusion of theoretical rigor and practical innovation, positioning him as a prominent figure in modern computational and stochastic analysis. Google Scholar profile of 102 Citations, 6 h-index, 5 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Hatata, A., Galal, O. H., Said, N., & Ahmed, D. (2021). Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network. Renewable Energy, 178, 226–240.

2. Galal, O. H., El-Tahan, W., El-Tawil, M. A., & Mahmoud, A. A. (2008). Spectral SFEM analysis of structures with stochastic parameters under stochastic excitation. Structural Engineering and Mechanics: An International Journal, 28(3), 281–294.

3. Galal, O. H., El-Tawil, M. A., & Mahmoud, A. A. (2002). Stochastic beam equations under random dynamic loads. International Journal of Solids and Structures, 39(4), 1031–1040.

4. Galal, O. H. (2013). A proposed stochastic finite difference approach based on homogenous chaos expansion. Journal of Applied Mathematics, 2013(1), 950469.

5. El-Beltagy, M. A., Wafa, M. I., & Galal, O. H. (2012). Upwind finite-volume solution of Stochastic Burgers’ equation. Scientific Research Publishing.

Assoc. Prof. Dr. Krishna Pada Das | Mathematics | Best Researcher Award

Assoc. Prof. Dr. Krishna Pada Das | Mathematics | Best Researcher Award

Associate Professor | Mahadevananda Mahavidyalaya | India

Assoc. Prof. Dr. Krishna Pada Das, a distinguished scholar in Mathematics, currently serves as an Associate Professor in the Department of Mathematics at Mahadevananda Mahavidyalaya, Barrackpore. His academic journey includes a Bachelor’s and Master’s degree in Mathematical Science from Calcutta University and a Doctorate in Applied Mathematics from Jadavpur University, where he conducted pioneering research under the supervision of Prof. Joydev Chattopadhyay at the Indian Statistical Institute. With extensive professional experience as a researcher and educator, he has contributed significantly to the field of Mathematics through his exploration of eco-epidemiological models, nonlinear dynamics, and bifurcation theory. His Mathematics research primarily focuses on the dynamics of predator-prey systems, infectious disease modeling, and population ecology using advanced mathematical tools such as fractional calculus, diffusion, stochastic processes, and delay differential equations. Over the course of his Mathematics career, Assoc. Prof. Dr. Krishna Pada Das has published more than ninety high-impact Mathematics research papers and guided multiple Ph.D. candidates in applied and computational Mathematics. His notable Mathematics achievements include the ISI Research Award and clearing the SLET examination, recognizing his exceptional academic and research proficiency in Mathematics. His Mathematics skills encompass mathematical modeling, numerical simulation using MATLAB, and analytical techniques for stability and chaos control in biological systems. In conclusion, his Mathematics contributions have strengthened interdisciplinary research connecting ecology, epidemiology, and applied mathematics, solidifying his position as a prominent researcher. Google Scholar profile of 1840 Citations, 23 h-index, 38 i10 index.

Profile: Google Scholar

Featured Publications

1. Das, K., & Mukherjee, A. K. (2007). Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: Role of biosurfactants in enhancing. Journal of Applied Microbiology, 102(1), 195–203.

2. Dutta, S. K., Das, K., Ghosh, B., & Blackman, C. F. (1992). Dose dependence of acetylcholinesterase activity in neuroblastoma cells exposed to modulated radio‐frequency electromagnetic radiation. Bioelectromagnetics, 13(4), 317–322.

3. Soni, B. K., Das, K., & Ghose, T. K. (1982). Bioconversion of agro-wastes into acetone butanol. Biotechnology Letters, 4(1), 19–22.

4. Kooi, B. W., van Voorn, G. A. K., & Das, K. P. (2011). Stabilization and complex dynamics in a predator–prey model with predator suffering from an infectious disease. Ecological Complexity, 8(1), 113–122.

5. Das, C. R., Mondal, N. K., Aditya, P., Datta, J. K., Banerjee, A., & Das, K. (2012). Allelopathic potentialities of leachates of leaf litter of some selected tree species on gram seeds under laboratory conditions. Asian Journal of Experimental Biological Sciences, 3(1), 59–65.*

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi | Differentiation equation | Best Researcher Award

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi | Differentiation equation | Best Researcher Award

Associate Professor | Imam Mohammad Ibn Saud Islamic University | Saudi Arabia

Assist. Prof. Dr. Reem Abdullah Sadan Aljethi is an accomplished scholar in Applied Mathematics whose expertise lies prominently in the study and advancement of Differentiation Equation systems. Her academic journey, including a Doctor of Philosophy from Universiti Putra Malaysia and earlier degrees from King Saud University, shaped her deep engagement with Differentiation Equation models and fractional calculus. With professional experience as a Lecturer, Vice Dean, and currently an Associate Professor at Imam Mohammad Ibn Saud Islamic University, she has significantly contributed to teaching, research, and academic administration. Her research explores fractional Differentiation Equation formulations, Lévy stochastic processes, and applications in financial and physical systems. Her Q1-ranked publications in journals like Mathematics and Chaos, Solitons & Fractals highlight her command of complex Differentiation Equation frameworks. Recognized through her participation in international conferences and leadership programs, she exhibits strong analytical and computational skills, particularly in MATLAB and mathematical modeling. Her dedication to the Differentiation Equation field continues to influence emerging studies in nonlinear systems, fractional models, and applied mathematics. Overall, Assist. Prof. Dr. Reem Abdullah Sadan Aljethi’s scholarly path exemplifies excellence, innovation, and leadership in the global study of Differentiation Equation research and its expanding interdisciplinary applications.

Profiles: Google Scholar | ORCID

Featured Publications

1. Aljethi, R. A., & Kılıçman, A. (2022). Financial applications on fractional Lévy stochastic processes. Fractal and Fractional, 6(5), 278.

2. Aljethi, R. A., & Kılıçman, A. (2023). Analysis of fractional differential equation and its application to realistic data. Chaos, Solitons & Fractals, 171, 113446.

3. Aljethi, R. A., & Kılıçman, A. (2023). Derivation of the fractional Fokker–Planck equation for stable Lévy with financial applications. Mathematics, 11(5), 1102.

4. Aljedhi, R. A., & Kılıçman, A. (2020). Fractional partial differential equations associated with Lévy stable process. Mathematics, 8(4), 508.

5. Ejaz Hussain, U. Y., Aljethi, R. A., & Farooq, K. (2025). Optical multi-peakon dynamics in the fractional cubic–quintic nonlinear pulse propagation model using a novel integral approach. Fractal and Fractional, 9(10), 631.

Dr. Prity Kumari | Mathematics | Women Researcher Award

Dr. Prity Kumari | Mathematics | Women Researcher Award

PhD scholar | National Institute of Technology | India

Dr. Prity Kumari is an accomplished researcher in Mathematics with expertise in graph theory, combinatorics, cryptography, wireless sensor networks, and machine learning, demonstrating a strong academic and professional foundation through advanced studies and significant teaching experience in engineering mathematics, numerical methods, and discrete mathematics. Her doctoral work focused on the application of combinatorial design in wireless sensor networks, reflecting her depth in both theoretical and applied Mathematics. She has published impactful research in reputed SCIE and Q1/Q2 journals, contributing to key areas like group key management, cryptographic security, and re-keying prediction models using Mathematics-driven combinatorial and machine learning approaches. With fellowships, merit-based scholarships, and active participation in national-level workshops on post-quantum cryptography, cyber security, and Mathematics for machine learning, she has broadened her expertise and collaborative exposure. Dr. Prity Kumari has also enriched her professional skills through roles as a Mathematics faculty and teaching assistant, guiding learners in foundational and advanced topics of Mathematics. Her research skills highlight proficiency in combinatorial design, cryptographic applications, algorithmic development, and predictive modeling, aligning with cutting-edge directions in Mathematics and computer science. Awards, honors, and fellowships further strengthen her academic profile, demonstrating excellence and commitment. Beyond research, she engaged in leadership roles like hostel representative, reflecting organizational and interpersonal abilities. In conclusion, Dr. Prity Kumari embodies a Mathematics scholar whose contributions interconnect combinatorial structures, cryptographic security, and applied computational methods, making her a valuable academic and researcher with strong potential for further advancing the field of Mathematics.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kumari, P., & Singh, K. R. (2024). Re-keying analysis in group key management of wireless sensor networks. Cryptography and Communications, 16(3), 665–677.

2. Mandal, R. K. P. K. N. R. D. S. S. K. (2024). Experimental comparison of pool boiling characteristics between CNT, GO, and CNT + GO-coated copper substrate. Heat Transfer. Advance online publication.

3. Kumar, P. K. K. R. S. R. (2025). Stacking ensemble algorithm to predict re-keying in group key management. Arabian Journal for Science and Engineering, 1–15.

4. Pegu, J., Singh, K. R., Kumari, P., & Mishra, V. N. (2025). Decomposition of corona graph. Filomat, 39(10), 3321–3328.

5. Kumari, P., & Singh, K. R. (2025). Re-keying in group key management for wireless sensor network using nested balanced incomplete block designs. IETE Journal of Research, 1–13.

Dr. Akinbo Bayo Johnson | Mathematics | Best Researcher Award

Dr. Akinbo Bayo Johnson | Mathematics | Best Researcher Award

Senior Lecturer | Federal College of Education, Abeokuta, Nigeria and Postdoctoral researcher at Universidade Federal De Itajuba | Brazil 

Dr. Akinbo Bayo Johnson is a distinguished scholar in applied mathematics whose expertise spans fluid dynamics, entropy generation, nano and non-Newtonian fluids, thermodynamic models, and computational mathematics. With a Ph.D. in applied mathematics and solid foundations from advanced studies in mathematics, his academic journey has been dedicated to advancing theoretical and applied aspects of mathematics. He has served as a lecturer, senior researcher, and currently contributes as a postdoctoral researcher in Brazil, showcasing professional experience across teaching, supervision, and international research collaborations. His research interests are deeply rooted in mathematics, where he explores bioconvectional fluids, heat and mass transfer, and mathematical modeling, all of which have resulted in impactful publications in high-ranking journals. Dr. Akinbo has been honored with awards such as the Best Paper Award, Tetfund Postdoctoral Award, and multiple recognitions from scientific associations, reflecting his excellence in mathematics-driven research. His professional memberships in the Mathematical Association of Nigeria and related bodies further highlight his integration within the mathematics community. Skilled in MATHEMATICA programming and computational approaches, he has applied mathematics extensively in solving differential equations, thermodynamic systems, and fluid mechanics problems. His career demonstrates consistent contributions as a reviewer for international journals, strengthening the dissemination of mathematical knowledge. Overall, Dr. Akinbo Bayo Johnson embodies a commitment to mathematics through education, research, and professional service, and his dedication ensures that mathematics remains a vital tool in addressing complex scientific challenges while inspiring the next generation of mathematics researchers.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. Akinbo, B. J., & Olajuwon, B. I. (2023). Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction. International Journal of Modelling and Simulation, 43(2), 87–100.

2. Akinbo, B. J., & Olajuwon, B. I. (2021). Impact of radiation and chemical reaction on stagnation-point flow of hydromagnetic Walters' B fluid with Newtonian heating. International Communications in Heat and Mass Transfer, 121, 105115.

3. Akinbo, B. J., & Olajuwon, B. I. (2019). Homotopy analysis investigation of heat and mass transfer flow past a vertical porous medium in the presence of heat source. International Journal of Heat & Technology, 37(3).

4. Akinbo, B. J., & Olajuwon, B. I. (2021). Radiation and thermal-diffusion interaction on stagnation-point flow of Walters' B fluid toward a vertical stretching sheet. International Communications in Heat and Mass Transfer, 126, 105471.

5. Akinbo, B. J., & Olajuwon, B. I. (2021). Heat transfer analysis in a hydromagnetic Walters' B fluid with elastic deformation and Newtonian heating. Heat Transfer, 50(3), 2033–2048.

6. Akinbo, B. J., Faniran, T., & Ayoola, E. O. (2015). Numerical solution of stochastic differential equations. International Journal of Advanced Research in Science, Engineering and Technology.

7. Akinbo, B. J., & Olajuwon, B. I. (2019). Heat and mass transfer in magnetohydrodynamics (MHD) flow over a moving vertical plate with convective boundary condition in the presence of thermal radiation. Sigma Journal of Engineering and Natural Sciences, 37(3), 1031–1053.

8. Akinbo, B. (2021). Influence of convective boundary condition on heat and mass transfer in a Walters’ B fluid over a vertical stretching surface with thermal-diffusion effect. Journal of Thermal Engineering, 7(7), 1784–1796.

9. Akinbo, B. J., & Olajuwon, B. I. (2019). Convective heat and mass transfer in electrically conducting flow past a vertical plate embedded in a porous medium in the presence of thermal radiation and thermo diffusion. Computational Thermal Sciences: An International Journal, 11(4).

10. Akinbo, B. J., & Olajuwon, B. I. (2025). Significance of Cattaneo-Christov heat flux model and heat generation/absorption with chemical reaction in Walters’ B fluid via a porous medium in the presence of Newtonian heating. International Journal of Modelling and Simulation, 45(1), 137–146.

Dr. Seungpyo Lee | Computational Methods | Best Researcher Award

Dr. Seungpyo Lee | Computational Methods | Best Researcher Award

Director at ILJIN Global, South Korea

Dr. Seungpyo Lee is an expert in computational methods with extensive research in computational methods for mechanical systems, especially in bearings. His focus lies in computational methods for finite element analysis, and he leads computational methods applications at ILJIN Global. Over the years, his work has demonstrated how computational methods enhance engineering outcomes. Dr. Seungpyo Lee utilizes computational methods in fatigue evaluation, stiffness prediction, and dynamic simulations. By implementing computational methods, he ensures accuracy, efficiency, and innovation. His leadership relies on computational methods to solve real-world mechanical challenges. Using computational methods, he fosters engineering advancements. Computational methods help define his professional profile. Through computational methods, Dr. Seungpyo Lee inspires others to pursue innovation via computational methods in research and development.

Professional Profile

Google Scholar

Education 

Dr. Seungpyo Lee pursued all his degrees in mechanical engineering from Hanyang University, specializing in computational methods, particularly computational methods used in finite element analysis. Throughout his education, computational methods were central to his learning, research, and thesis. His academic foundation was enriched by computational methods in structural analysis and mechanics. He became proficient in computational methods while working on real-time simulation projects. Computational methods were crucial in solving engineering problems. His graduate studies included extensive work on computational methods in applied mechanics. Computational methods supported his skill development and critical thinking. Dr. Lee explored advanced topics in computational methods, integrating computational methods into core engineering applications. His commitment to computational methods began early and shaped his entire academic path.

Experience 

Dr. Seungpyo Lee has applied computational methods throughout his career. At ILJIN Global, he leads the R&D Center's CAE team, where computational methods are a foundation of daily operations. His role includes integrating computational methods for mechanical simulations, design validation, and predictive maintenance. Dr. Lee manages teams that rely on computational methods to solve real-time problems. With computational methods, he evaluates bearing stiffness, friction, and fatigue. Computational methods allow his team to drive innovation and enhance product quality. His daily decisions are based on computational methods for simulation accuracy. Under his guidance, computational methods have transformed workflows. His experience reflects a deep understanding of computational methods. Dr. Lee continuously evolves professional practices using computational methods.

Research Interest 

Dr. Seungpyo Lee’s research interests revolve around computational methods for CAE applications. He uses computational methods to study bearing performance, fatigue life, and structural behavior. His current research includes computational methods applied in AI-driven simulations. Dr. Lee combines computational methods with machine learning and deep learning. These advanced computational methods improve prediction accuracy. He investigates how computational methods optimize mechanical design. His research also evaluates computational methods in modeling torque and stiffness. Using computational methods, he addresses industry challenges. He frequently publishes studies exploring new computational methods. His research goal is to expand computational methods in automated analysis. Dr. Lee constantly explores frontiers of computational methods, enriching the engineering field with innovative computational methods-based solutions.

Award and Honor

Dr. Seungpyo Lee’s achievements are grounded in his expertise in computational methods. He has earned recognition for applying computational methods in mechanical simulations. His work with computational methods has received industry-wide acclaim. Dr. Lee’s use of computational methods in predictive modeling led to significant product innovation. Honors were awarded based on his contributions to computational methods in CAE analysis. He has led numerous projects where computational methods were essential. These projects highlight his mastery of computational methods in real-world scenarios. His honors celebrate dedication to advancing computational methods. Computational methods are central to every accolade he receives. His reputation as a leader in computational methods continues to grow. Dr. Lee’s accomplishments underscore the power of computational methods.

Research Skill

Dr. Seungpyo Lee’s research skills are rooted in computational methods, especially in finite element modeling. He excels in applying computational methods for stress analysis, fatigue simulation, and AI integration. His problem-solving approach uses computational methods extensively. With a strong command of simulation tools, he implements computational methods in various projects. His skill set includes writing algorithms and customizing tools based on computational methods. Dr. Lee can assess results through computational methods and improve accuracy. He adapts computational methods to new technologies. His ability to apply computational methods in different domains showcases versatility. Dr. Lee develops strategies using computational methods to solve complex problems. His proficiency ensures that computational methods remain central to research and development practices.

Publication Top Notes 

Title: Probabilistic analysis for mechanical properties of glass/epoxy composites using homogenization method and Monte Carlo simulation
Authors: SP Lee, JW Jin, KW Kang
Journal: Renewable Energy

Title: Low and high cycle fatigue of automotive brake discs using coupled thermo-mechanical finite element analysis under thermal loading
Authors: MJ Han, CH Lee, TW Park, SP Lee
Journal: Journal of Mechanical Science and Technology

Title: Bearing life evaluation of automotive wheel bearing considering operation loading and rotation speed
Authors: SP Lee
Journal: Transactions of the Korean Society of Mechanical Engineers A

Title: Homogenization-based multiscale analysis for equivalent mechanical properties of nonwoven carbon-fiber fabric composites
Authors: H Lee, C Choi, J Jin, M Huh, S Lee, K Kang
Journal: Journal of Mechanical Science and Technology

Title: Distortion analysis for outer ring of automotive wheel bearing
Authors: SP Lee, BC Kim, IH Lee, YG Cho, YC Kim
Journal: Transactions of the Korean Society of Mechanical Engineers A

Title: Analysis for deformation behavior of multilayer ceramic capacitor based on multiscale homogenization approach
Authors: SP Lee, KW Kang
Journal: Journal of Mechanical Science and Technology

Title: The effect of outer ring flange concavity on automotive wheel bearings performance
Authors: S Lee, N Lee, J Lim, J Park
Journal: SAE International Journal of Passenger Cars - Mechanical Systems

Title: Structural design and analysis for small wind turbine blade
Authors: SP Lee, KW Kang, SM Chang, JH Lee
Journal: Journal of the Korean Society of Manufacturing Technology Engineers

Title: Deformation analysis of rubber seal assembly considering uncertainties in mechanical properties
Authors: SP Lee, KW Kang
Journal: Journal of Mechanical Science and Technology

Title: Fatigue analysis for automotive wheel bearing flanges
Authors: JW Jin, KW Kang, S Lee
Journal: International Journal of Precision Engineering and Manufacturing

Title: Life Evaluation of grease for ball bearings according to temperature, speed, and load changes
Authors: J Son, S Kim, BH Choi, S Lee
Journal: Tribology and Lubricants

Conclusion

Dr. Seungpyo Lee exemplifies leadership in computational methods across research, education, and industry. His consistent use of computational methods has advanced mechanical engineering practices. Whether in simulation, design, or research, computational methods are his core tool. Dr. Lee advocates for computational methods in problem-solving and innovation. Through team leadership and research, he advances computational methods. His knowledge of computational methods helps bridge academic theory and industrial practice. Dr. Lee’s influence ensures computational methods will remain integral to future developments. He continues to inspire others by promoting computational methods. His vision includes expanding computational methods to new frontiers. Dr. Lee's legacy will be closely tied to computational methods and their impact on engineering evolution.

Dr. Ammar Alnmr | Geotechnical engineering | Best Researcher Award

Dr. Ammar Alnmr | Geotechnical engineering | Best Researcher Award

Dr. Ammar Alnmr, Széchenyi István University, Hungary

Dr. Ammar Alnmr is an accomplished civil engineer specializing in geotechnical engineering. With a strong academic foundation, including dual Ph.D. pursuits from Széchenyi István University, Hungary, and Tishreen University, Syria, he brings extensive experience from both academia and industry. As a geotechnical engineer and former lecturer at Tishreen University, Dr. Alnmr has contributed to various critical projects and studies, ranging from slope stability to tunnel design. Fluent in Arabic and proficient in English, he is an active member of the Syrian Engineers’ Syndicate, committed to continuous professional growth and advancement in geotechnical engineering

PROFILE

Orcid

Education

Dr. Ammar Alnmr is currently pursuing a Ph.D. in Civil Engineering with a focus on Geotechnical Engineering at Széchenyi István University in Gyor, Hungary, expected to graduate in April 2025. He previously earned another Ph.D. in Civil Engineering from Tishreen University, Lattakia, Syria, where he also completed his Master’s Degree in Civil Engineering (Geotechnical Engineering) in 2017 and his Bachelor’s Degree in Civil Engineering (Geotechnical Engineering) in 2012. His academic journey began with a High School Scientific Degree from Yabroud, Rural Damascus, Syria, which he completed in 2007. Dr. Alnmr’s educational background reflects a consistent focus on geotechnical engineering, laying a solid foundation for his research and professional pursuits.

Research Innovation

Dr. Ammar Alnmr has a robust research portfolio focused on the complex dynamics of plasma physics. His completed projects include significant studies such as the development of a Magnetized Plasma Lens, investigations into Harmonic Generation in Laser-Plasma Interaction, and comprehensive analyses of Weibel Instability in various contexts, including microwave discharge and laser-produced plasmas. He has also explored Kinetic Instability in Astronomical Shock Waves and the generation of Large Amplitude Plasma Waves through the interaction of laser beams. Currently, Dr. Alnmr is working on cutting-edge research projects, including the Laser Direct Acceleration of Electrons in Magnetized Plasma Channels, the exploration of Synchrotron Weibel Instability, and the study of Self-Generated Magnetic Fields in Laser Fusion Processes. These ongoing projects are aimed at advancing our understanding of plasma behavior and its applications in fields such as fusion energy and space physics.

Awards and Honors

Dr. Ammar Alnmr has been recognized for his academic excellence with the Superior Graduate’s Certificate. This honor reflects his outstanding performance and dedication throughout his educational journey. It underscores his commitment to achieving high academic standards and his ability to excel in his field. This recognition is a testament to his hard work, perseverance, and exceptional capabilities in civil engineering, particularly in geotechnical engineering.

Assoc Prof Dr. Feng Liu | Complex Flow Mechanics | Best Researcher Award

Assoc Prof Dr. Feng Liu | Complex Flow Mechanics | Best Researcher Award

Assoc Prof Dr. Feng Liu, Xi’an Shiyou University, China

Dr. Feng Liu is an esteemed Associate Professor at Xi’an Shiyou University, specializing in oil and gas reservoir engineering. His expertise includes fluid phase behavior, complex flow mechanics, and numerical simulation of reservoirs. With a robust publication record and several patents to his name, Dr. Liu has made significant contributions to the field, earning recognition for his innovative research and technical advancements.

PROFILE

Scopus

Education

Dr. Feng Liu completed his education at Xi’an Shiyou University, specializing in oil and gas reservoir engineering. He has received advanced training in fluid phase behavior, complex flow mechanics, and numerical simulation of oil and gas reservoirs.

Professional Experience

Dr. Liu is an Associate Professor at Xi’an Shiyou University, where he focuses on the application of advanced numerical methods and simulation techniques to improve the understanding and management of oil and gas reservoirs. His career includes significant contributions to both academic research and practical applications in the field of petroleum engineering.

Research Interest

Dr. Liu’s research interests encompass oil and gas reservoir engineering, fluid phase behavior, complex flow mechanics, and the numerical simulation of oil and gas reservoirs. His work aims to enhance the efficiency and effectiveness of reservoir management through innovative modeling and simulation techniques.

Main Academic Achievements

Dr. Liu has published 20 papers as the first author in prominent domestic and international journals, including Journal of Molecular Liquids, Energy & Fuels, Journal of Petroleum Science and Engineering, Energies, Acta Petrolea, Journal of Southwest Petroleum University, and Daqing Petroleum Geology and Development. Among these, 12 papers are indexed in SCI and 2 in EI. He holds 4 national invention patents and 7 software copyrights. Dr. Liu is also the author of a textbook on reservoir numerical simulation. His innovative research has earned him 1 first prize and 2 second prizes for excellent scientific and technological research achievements in higher education institutions in Shaanxi Province.

 

NOTABLE PUBLICATIONS