Prof. Raoelina Andriambololona | Physics | Best Researcher Award

Prof. Raoelina Andriambololona | Physics | Best Researcher Award

Emeritus Professor at Institut National des Sciences et Techniques Nucléaires, Madagascar

Prof. Raoelina Andriambololona 🇲🇬 is an iconic figure in the global scientific community, renowned for his pioneering contributions to nuclear physics, theoretical science, and sustainable development. With over six decades of dedicated service, he has transformed science and technology education in Madagascar and across Africa. From being a CNRS researcher in France to establishing world-class research institutions back home, Prof. Raoelina’s vision is deeply rooted in innovation, self-reliance, and scientific ethics. A prolific author of 250+ publications 📚 and several university-level books, he continues to inspire generations of physicists. His leadership in nanotechnology, environmental protection, and science diplomacy has earned him numerous global honors 🏅. Fluent in Malagasy, French, and English, and with professional footprints in over 30 countries, Prof. Raoelina stands as a beacon of excellence, dedication, and intellectual humility. His legacy is not only academic but deeply humanistic 🌱💡.

Professional Profile 

🎓 Education

Prof. Raoelina’s academic odyssey began in Madagascar and blossomed at the University of Aix-Marseille, France 🇫🇷, where he obtained his Doctorat ès Sciences d’État in 1967. His earlier credentials include a Doctorate of 3rd Cycle in Theoretical Physics (1962), diplomas in pure and applied mathematics (1957–1958), and a degree in physical sciences. This rich foundation empowered his intellectual pursuit across quantum theory, linear algebra, and advanced mechanics 🧠📘. His education wasn’t just confined to acquiring degrees but focused on laying the groundwork for a national educational revolution in Madagascar. The blend of French scientific rigor and Malagasy passion shaped him into a transcontinental academic luminary. His multilingual fluency in Malagasy, French, and English further cemented his ability to bridge knowledge between diverse cultures 🌐🗣️. His journey embodies a harmonious union of deep theoretical insight and practical academic engineering.

🧪 Professional Experience

Prof. Raoelina’s professional career radiates across continents and sectors, beginning as a researcher at CNRS–Marseille in the 1960s and later as Professor Titulaire in Madagascar by 1972 🧑‍🏫. He was instrumental in founding multiple institutions from scratch, including the Laboratoire de Physique Nucléaire and the Institut National des Sciences et Techniques Nucléaires (INSTN). Nationally, he shaped physics education, built observatories, and opened the first graduate programs in nuclear physics. Internationally, he served as an advisor to the UNDP, IAEA liaison officer for decades, Fulbright professor in the U.S., and UNESCO expert advisor 🌍🔬. His role as Scientific Advisor to the President of Madagascar (1986–1991) further reflects his unique ability to integrate science with policy and national development. Raoelina is not only a pioneer in academia but a strategist in science infrastructure development, capacity building, and global knowledge networks 🧭🏗️.

🔬 Research Interests

Prof. Raoelina’s research traverses a remarkable spectrum—ranging from particle physics, quantum mechanics, and nuclear spectroscopy to nanotechnology, fractional calculus, and environmental science. His scientific curiosity has been deeply interdisciplinary, focusing also on linear and multilinear algebra, development studies, and ethics in science 🧠🌿. His commitment to applied research is evident in his work on X-ray fluorescence for ore analysis, radiation protection, and environmental monitoring. With a sharp lens on the challenges of developing countries, he emphasizes indigenous knowledge, sustainability, and technology transfer 📈. His vision of endogenous development and the use of native language in science education marks him as both a thought leader and cultural reformist. His 250+ publications are not just academic outputs but serve as knowledge vehicles across generations and geographies. Prof. Raoelina’s research transcends the lab—blending intellect with societal impact 🎯📖.

🏆 Awards and Honors

Prof. Raoelina’s excellence has been globally acknowledged through numerous prestigious honors 🌟. He is the 2020 recipient of the TWAS-C.N.R. Rao Award for Scientific Research and holds national decorations such as the Grand-Croix de 2ème classe de l’Ordre National Malagasy (1997) and Commandeur de l’Ordre du Mérite de Madagascar (1991). These awards recognize not only his scholarly brilliance but also his unwavering dedication to national science development. His election to the African Academy of Sciences, TWAS, and the New York Academy of Sciences confirms his impact on the international stage 🌐. As the founding president of several national scientific societies and advisory boards, his role as a scientific statesman is undeniable. Through music, ethics, and education, his contributions have extended beyond the lab and lecture hall. These accolades are testaments to a life passionately lived in service of knowledge and humanity 🕊️📜.

📚 Publications Top Note 

1.Title: Assessment of soil redistribution rates by 137Cs and 210Pbex in a typical Malagasy agricultural field
Authors: N Rabesiranana, M Rasolonirina, AF Solonjara, HN Ravoson, …
Year: 2016
Citations: 32
Source: Journal of Environmental Radioactivity, Volume 152, Pages 112-118
Summary:
This study investigates soil erosion and redistribution rates in agricultural fields of Madagascar using radioactive tracers 137Cs and 210Pbex. These isotopes serve as markers to quantify soil movement and deposition, offering insights into land degradation processes in typical Malagasy agricultural settings.

2.Title: Algèbre linéaire et multilinéaire
Author: R Andriambololona
Year: 1986
Citations: 28
Source: Applications, Collection LIRA, INSTN Madagascar
Summary:
A comprehensive treatise on linear and multilinear algebra, focusing on theoretical foundations and applications. It is a foundational text for mathematical education and research in Madagascar, especially in algebraic structures relevant to physics and engineering.

3.Title: Top soil radioactivity assessment in a high natural radiation background area: The case of Vinaninkarena, Antsirabe—Madagascar
Authors: N Rabesiranana, M Rasolonirina, F Terina, AF Solonjara, …
Year: 2008
Citations: 24
Source: Applied Radiation and Isotopes, Volume 66, Issue 11, Pages 1619-1622
Summary:
This paper assesses the natural radioactivity levels in the topsoil of Vinaninkarena, an area with high natural radiation background in Madagascar. The findings provide important baseline data for environmental radiation monitoring and public health considerations.

4.Title: Dispersion Operators Algebra and Linear Canonical Transformations
Authors: R Andriambololona, RT Ranaivoson, R Hasimbola Damo Emile, …
Year: 2017
Citations: 22
Source: International Journal of Theoretical Physics, Volume 56, Issue 4, Pages 1258-1273
Summary:
This article presents a theoretical framework linking dispersion operators algebra with linear canonical transformations, important in mathematical physics and quantum mechanics. It advances the understanding of operator theory in quantum contexts.

5.Title: Study on a phase space representation of quantum theory
Authors: T Ranaivoson, R Andriambololona, R Hanitriarivo, R Raboanary
Year: 2013
Citations: 21
Source: arXiv preprint arXiv:1304.1034
Summary:
The paper explores phase space formulations of quantum mechanics, offering novel insights into representing quantum states and operators. It emphasizes the theoretical and computational advantages of this approach.

6.Title: Cleft lip and palate in Madagascar 1998–2007
Authors: RA Rakotoarison, AE Rakotoarivony, N Rabesandratana, …
Year: 2012
Citations: 20
Source: British Journal of Oral and Maxillofacial Surgery, Volume 50, Issue 5, Pages 430-434
Summary:
An epidemiological study documenting the incidence, treatment, and outcomes of cleft lip and palate cases in Madagascar over a decade. The research highlights healthcare challenges and the need for improved surgical interventions.

7.Title: Definitions of real order integrals and derivatives using operator approach
Author: R Andriambololona
Year: 2012
Citations: 20
Source: arXiv preprint arXiv:1207.0409
Summary:
This paper introduces an operator-based method to define fractional calculus concepts such as real order integrals and derivatives, contributing to the mathematical theory with potential applications in physics and engineering.

8.Title: Linear canonical transformations in relativistic quantum physics
Authors: RT Ranaivoson, R Andriambololona, H Rakotoson, R Raboanary
Year: 2021
Citations: 17
Source: Physica Scripta, Volume 96, Issue 6, 065204
Summary:
The authors analyze the role of linear canonical transformations in the framework of relativistic quantum physics, exploring their implications for the symmetry and dynamics of quantum systems.

9.Title: A study of the Dirac-Sidharth equation
Authors: R Andriambololona, C Rakotonirina
Year: 2009
Citations: 16
Source: arXiv preprint arXiv:0910.2868
Summary:
The paper investigates the Dirac-Sidharth equation, a modification of the Dirac equation in quantum mechanics, focusing on its mathematical properties and physical interpretations.

10.Title: Time-Frequency analysis and harmonic Gaussian functions
Authors: T Ranaivoson, R Andriambololona, R Hanitriarivo
Year: 2013
Citations: 15
Source: arXiv preprint arXiv:1303.1909
Summary:
This research develops methods for time-frequency analysis using harmonic Gaussian functions, relevant for signal processing and quantum mechanics.

11.Title: Mécanique quantique
Author: R Andriambololona
Year: 1990
Citations: 15
Source: Collection LIRA, INSTN Madagascar, pp. 25.387-394
Summary:
A foundational book on quantum mechanics, covering theoretical concepts, mathematical formalism, and applications. It serves as a key reference for students and researchers in Madagascar.

🧭 Conclusion

Prof. Raoelina Andriambololona is not merely a scientist—he is a visionary builder of nations through science 🌍🏛️. His unparalleled contributions in education, research, and policy over six decades mark him as a towering intellectual of Africa and the global South. With a career rooted in humility, foresight, and innovation, he has redefined what it means to be a scientist in service of humanity. His legacy is cemented in institutions, publications, and minds that continue to carry forward his mission 💡📚. Whether in physics, ethics, development, or music, Prof. Raoelina remains a multifaceted scholar and cultural pillar. His work exemplifies the role of science in shaping just, informed, and sustainable societies. As future generations draw inspiration from his life’s work, his name shall endure in the annals of both scientific discovery and national empowerment 🌟🧬.

Hossein Mahmoudi Chenari | Condensed Matter Physics | Best Research Article Award

Dr. Hossein Mahmoudi Chenari | Condensed Matter Physics | Best Research Article Award

Faculty member at Guilan university, Iran

Dr. Hossein Mahmoudi Chenari (👨‍🔬), born in 1980, is a distinguished Iranian physicist currently serving as an Associate Professor at the University of Guilan 🇮🇷. With a robust academic foundation in condensed matter physics, he has made impactful contributions in the synthesis and characterization of nanostructured materials, thin films, and semiconductor devices. He has also extended his expertise internationally, including a research stint at the Julius Maximilian University of Würzburg 🇩🇪. Dr. Chenari’s research spans across gas sensors, optoelectronics, electrospun nanofibers, and UV/Vis photodetectors, integrating practical and theoretical insights. His dedication to science is reflected through numerous publications, citations, and collaborations. 📚⚗️ With a keen eye for innovation and a passion for material science, he continues to be a key contributor in advanced material research and solid-state physics, shaping the future of sensor and electronic technologies. 🌐🔍✨

Professional Profile 

🎓 Education

Dr. Chenari’s academic voyage commenced at Zanjan University (2000–2004), where he earned his BSc in Physics with a strong focus on foundational sciences 📘. He then progressed to Urmia University, completing both his MSc (2004–2006) and PhD (2006–2010) in Condensed Matter Physics, specializing in the electrical and optical properties of novel materials 🧠📊. His graduate research laid the groundwork for future explorations into nanostructured and composite materials. During his PhD, he explored cutting-edge concepts in material characterization and device physics, which positioned him at the intersection of academic rigor and real-world application. His educational journey culminated with a visiting scientist fellowship at The Julius Maximilian University of Würzburg in Germany (2010), where he honed advanced experimental techniques in nanoscale physics 🇩🇪🔬. These milestones shaped his multifaceted expertise, blending Iranian academic depth with international scientific exposure. 🌍👨‍🏫

🏛️ Professional Experience

Since January 2012, Dr. Chenari has been a committed Associate Professor and Researcher at the Department of Physics, University of Guilan, bringing over a decade of experience to both classroom instruction and high-impact laboratory research 📚⚗️. With a rare blend of theoretical depth and experimental precision, he mentors students and leads advanced research in semiconductor device fabrication, gas sensing technologies, and nanofiber synthesis. His professional ethos is marked by a balance of scholarly excellence and community engagement within Iran’s scientific network. As a faculty member, he has collaborated across disciplines to address emerging challenges in optoelectronics, energy harvesting, and nanotechnology. His dedication also led him to foster international ties through academic visits and global co-authorships 🌐🧪. Dr. Chenari continues to influence the field of physics through teaching, research projects, and participation in professional societies, reinforcing his reputation as a leader in condensed matter and materials physics. 📈🧠

🧪 Research Interests

Dr. Chenari’s research spectrum is rich and interdisciplinary, anchored in nanostructured materials, thin-film technologies, and semiconductor device physics 🧬. He explores synthesis, characterization, and application of metal oxides, composite materials, UV/Vis photodetectors, and electrospun nanofibers, employing advanced techniques like C-V/I-V measurements, complex impedance spectroscopy, and thermal evaporation 🔍⚙️. His work bridges basic and applied science, targeting innovations in gas sensing, nonlinear optics (NLO), and 2D carbon fibers. His lab outputs consistently contribute to next-generation devices with improved sensitivity and efficiency 📟🌡️. Known for his methodical approach, he navigates both macroscopic functionality and microscopic mechanisms, enabling deeper understanding of material behavior. His scientific curiosity drives him to discover smart materials for optoelectronic integration, making his research both foundational and futuristic 🔭🚀.

🏅 Awards and Honors

While no specific awards are listed, Dr. Chenari’s academic trajectory and sustained position as Associate Professor underscore a highly respected career 🌟. His scholarly presence is further validated by a significant number of citations and an active Google Scholar profile with a wide-reaching academic footprint 📈📄. His international visiting scientist appointment in Germany reflects recognition by the global scientific community, a mark of honor reserved for top-tier researchers 🔬🌍. With his multi-domain expertise and strong research output, he is often regarded as a leading figure in Iran’s material physics community. His impact resonates through collaborative projects, peer recognition, and mentorship of the next generation of physicists 🎓🔑. These elements together testify to a career built on consistent excellence and intellectual leadership 💼🧑‍🔬.

📚 Publications Top Note 

1. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers

  • Authors: R. Shokrani Havigh, H. Mahmoudi Chenari

  • Year: 2022

  • Citations: 102

  • Journal: Scientific Reports, 12(1), 10704

  • Summary: This work investigates how different carbonization temperatures influence the structural, chemical, and surface properties of carbon fibers. The study employs a range of characterization techniques to show how temperature variations impact fiber crystallinity, elemental composition, and surface roughness—critical for optimizing their performance in various industrial applications.


2. Rietveld refinement, morphology analysis, optical and magnetic properties of magnesium-zinc ferrite nanofibers

  • Authors: N. Ghazi, H.M. Chenari, F.E. Ghodsi

  • Year: 2018

  • Citations: 59

  • Journal: Journal of Magnetism and Magnetic Materials, 468, 132–140

  • Summary: This paper uses Rietveld refinement to analyze magnesium-zinc ferrite nanofibers synthesized via electrospinning. Detailed magnetic and optical characterizations show potential use in electromagnetic and spintronic applications, linking structure to magnetic performance.


3. Frequency dependence of dielectric properties and electrical conductivity of Cu/nano-SnO₂ thick film/Cu arrangement

  • Authors: H.M. Chenari, M.M. Golzan, H. Sedghi, A. Hassanzadeh, M. Talebian

  • Year: 2011

  • Citations: 52

  • Journal: Current Applied Physics, 11(4), 1071–1076

  • Summary: This study explores the dielectric and electrical conductivity behavior of a Cu/nano-SnO₂/Cu configuration over varying frequencies. The results contribute to understanding the potential use of SnO₂-based materials in high-frequency electronic devices.


4. Frequency dependence of ultrahigh dielectric constant of novel synthesized SnO₂ nanoparticles thick films

  • Authors: H.M. Chenari, A. Hassanzadeh, M.M. Golzan, H. Sedghi, M. Talebian

  • Year: 2011

  • Citations: 51

  • Journal: Current Applied Physics, 11(3), 409–413

  • Summary: The paper focuses on SnO₂ nanoparticle-based thick films that demonstrate an ultrahigh dielectric constant, analyzing how their dielectric behavior shifts with frequency, which is promising for capacitor and microelectronic applications.


5. Titanium dioxide nanoparticles: synthesis, x-ray line analysis and chemical composition study

  • Authors: H.M. Chenari, C. Seibel, D. Hauschild, F. Reinert, H. Abdollahian

  • Year: 2016

  • Citations: 50

  • Journal: Materials Research, 19, 1319–1323

  • Summary: This work presents a detailed study on TiO₂ nanoparticles, including synthesis, X-ray line broadening analysis, and chemical composition. The insights help in tailoring nanoparticle properties for photocatalytic and solar energy uses.


6. Highly sensitive, self-powered photodetector based on reduced graphene oxide-polyvinyl pyrrolidone fibers (Fs)/p-Si heterojunction

  • Authors: S. Khalili, H.M. Chenari, F. Yıldırım, Z. Orhan, S. Aydogan

  • Year: 2021

  • Citations: 39

  • Journal: Journal of Alloys and Compounds, 889, 161647

  • Summary: A new self-powered photodetector based on rGO-PVP fiber/p-Si is reported, showing high sensitivity across a broad spectrum. This design offers a sustainable and efficient option for light detection in wearable and flexible electronics.


7. Successful electrospinning fabrication of ZrO₂ nanofibers: A detailed physical–chemical characterization study

  • Authors: S. Khalili, H.M. Chenari

  • Year: 2020

  • Citations: 39

  • Journal: Journal of Alloys and Compounds, 828, 154414

  • Summary: The paper describes the electrospinning synthesis of zirconia nanofibers and evaluates their crystalline structure, morphology, and thermal properties, establishing their potential for use in sensor and catalysis platforms.


8. Precipitation synthesis of tungsten oxide nanoparticles: X-ray line broadening analysis and photocatalytic efficiency study

  • Authors: O. Rezaee, H. Mahmoudi Chenari, F.E. Ghodsi

  • Year: 2016

  • Citations: 37

  • Journal: Journal of Sol-Gel Science and Technology, 80, 109–118

  • Summary: This study synthesizes WO₃ nanoparticles using precipitation and explores their photocatalytic activity in dye degradation, supported by X-ray line broadening and optical characterizations.


9. Preparation of PVA nanofibers containing tungsten oxide nanoparticle by electrospinning and consideration of their structural properties and photocatalytic activity

  • Authors: O. Rezaee, H.M. Chenari, F.E. Ghodsi, H. Ziyadi

  • Year: 2017

  • Citations: 33

  • Journal: Journal of Alloys and Compounds, 690, 864–872

  • Summary: The paper presents a hybrid material of PVA nanofibers embedded with WO₃ nanoparticles. The electrospun material’s structural, morphological, and photocatalytic behaviors are analyzed for environmental and sensor applications.


10. Highly sensitive self-powered UV-visible photodetector based on ZrO₂-RGO nanofibers/n-Si heterojunction

  • Authors: F. Yıldırım, S. Khalili, Z. Orhan, H.M. Chenari, Ş. Aydoğan

  • Year: 2023

  • Citations: 28

  • Journal: Journal of Alloys and Compounds, 935, 168054

  • Summary: This study develops a ZrO₂-RGO nanofiber-based heterojunction device capable of detecting UV-visible light with high sensitivity. The device is self-powered, making it suitable for energy-efficient optoelectronic applications.


11. Self-powered ZrO₂ nanofibers/n-Si photodetector with high on/off ratio for detecting very low optical signal

  • Authors: F. Yıldırım, Z. Orhan, S. Khalili, H.M. Chenari, Ş. Aydoğan

  • Year: 2021

  • Citations: 27

  • Journal: Journal of Physics D: Applied Physics, 54(47), 475101

  • Summary: The research presents a ZrO₂ nanofiber/n-Si heterojunction-based photodetector with impressive on/off signal ratios. It is designed for weak-light detection and offers potential for low-power optical sensors.


12. Ba-doped ZnO nanostructure: X-ray line analysis and optical properties in visible and low frequency infrared

  • Authors: R. Zamiri, H.M. Chenari, H.F. Moafi, M. Shabani, S.A. Salehizadeh, A. Rebelo, …

  • Year: 2016

  • Citations: 26

  • Journal: Ceramics International, 42(11), 12860–12867

  • Summary: This study investigates the influence of barium doping on the structural and optical properties of ZnO nanostructures. XRD and IR-Vis spectroscopy were used to understand how Ba affects crystallinity and optical behavior.

📌 Conclusion

Dr. Hossein Mahmoudi Chenari embodies the spirit of a dedicated physicist whose work bridges academic brilliance, global collaboration, and technological innovation 🧭. With a background rooted in Iranian academia and strengthened by international exposure, he has carved a niche in condensed matter and materials science, particularly in areas like thin films, semiconductor devices, and nanostructures. His research advances have not only enriched scholarly literature but also opened new pathways in optoelectronics and sensor technologies 🌐⚡. As a mentor, educator, and innovator, Dr. Chenari represents a model of scientific perseverance and curiosity-driven discovery. His journey stands as an inspiration to aspiring physicists and a valuable asset to the global research ecosystem 📘🧪🌟.

 

Uzma Tabassam | High Energy Physics | Best Researcher Award

Dr. Uzma Tabassam | High Energy Physics | Best Researcher Award 

Dr. Uzma Tabassam, COMSATS University Islamabad, Islamabad Pakistan, Pakistan

Dr. Uzma Tabassam is a dedicated physicist specializing in experimental nuclear astrophysics and high-energy physics. With a Ph.D. from the University of Camerino, Italy, and extensive experience in particle detector technology, Dr. Tabassam is a leading figure in experimental nuclear research at COMSATS University Islamabad. She excels in particle detector fabrication, simulations, and spectroscopy, playing an active role in global physics collaborations like the ALICE experiment.

PROFILE

Google Scholar Profile

Educational Details

Dr. Tabassam completed her Ph.D. in Experimental Nuclear Astrophysics at the University of Camerino, Italy, from 2009 to 2012. She holds an MS in Physics with a specialization in Quantum Computation and Nano-science from COMSATS Institute of Information Technology, Islamabad, which she earned in 2008. Her foundational academic journey began with an MSc in Physics from Quaid-i-Azam University, Islamabad, from 2003 to 2006, followed by a BSc in Physics from Islamabad College for Girls, F-6/2, Pakistan, between 2001 and 2003.

Professional Experience

With a strong focus on experimental nuclear physics and high energy physics, Dr. Tabassam has been involved in various collaborative research projects, including the ALICE experiment at CERN. Her work entails using advanced simulation tools like GEANT4 and Monte Carlo event generators (HIJING2.0, PYTHIA8, UrQMD, EPOS-LHC, and more) for the analysis of particle interactions. She has extensive experience in detector construction, UHV fabrication, and operating sophisticated tools such as electron microscopes and spectroscopic detectors (NaI(Tl), HPGe, SSBD, BF3).

Research Interest

Experimental Nuclear Astrophysics

High-Energy Physics Phenomenology

Particle Detector Fabrication

GEANT4 Simulations

Particle Spectroscopy Her contributions to these fields help advance the understanding of particle interactions at the nuclear and astrophysical levels.

Skills and Competencies

Proficient in O2 software and AliRoot for ALICE experiment data analysis

Expertise in Monte Carlo event generators such as PYTHIA8, UrQMD, and EPOS

Advanced user of ROOT data analysis framework and GEANT4 simulations

C++ programming for simulation and analysis

Particle detector fabrication (UHV) and spectroscopy with detectors like NaI(Tl), HPGe, SSBD, and BF3

Experience with front-end electronics for alpha, beta, and gamma spectroscopy

Proficiency in Linux, Latex, Microsoft Word, and Origin for data analysis

Top Notable Publications

Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions

Authors: J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, et al.

Journal: Nature Physics

Volume: 13 (6), Pages 535-539

Year: 2017

Citations: 1802

Anisotropic Flow of Charged Particles in Pb-Pb Collisions at

Authors: J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, et al.

Journal: Physical Review Letters

Volume: 116 (13), 132302

Year: 2016

Citations: 465

Production of charged pions, kaons, and (anti-)protons in Pb-Pb and inelastic collisions at TeV

Authors: S Acharya, D Adamová, SP Adhya, A Adler, J Adolfsson, MM Aggarwal, et al.

Journal: Physical Review C

Volume: 101 (4), 044907

Year: 2020

Citations: 450

Transverse momentum spectra and nuclear modification factors of charged particles in pp, p-Pb and Pb-Pb collisions at the LHC

Authors: S Acharya, FT Acosta, D Adamová, J Adolfsson, MM Aggarwal, et al.

Journal: Journal of High Energy Physics

Year: 2018 (11), Pages 1-33

Citations: 422

Measurement of D0, D+, D+ and Ds+ production in Pb-Pb collisions at TeV*

Authors: S Acharya, FT Acosta, D Adamová, J Adolfsson, MM Aggarwal, et al.

Journal: Journal of High Energy Physics

Year: 2018 (10), Pages 1-35

Citations: 421

Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at TeV

Authors: J Adam, D Adamová, MM Aggarwal, G Aglieri Rinella, M Agnello, et al.

Journal: Journal of High Energy Physics

Year: 2016 (5), Pages 1-49

Citations: 371

Multiplicity dependence of light-flavor hadron production in collisions at

Authors: S Acharya, FT Acosta, D Adamová, A Adler, J Adolfsson, MM Aggarwal, et al.

Journal: Physical Review C

Volume: 99 (2), 024906

Year: 2019

Citations: 335

Conclusion

Based on her academic credentials, significant research contributions, and extensive skillset, Dr. Uzma Tabassam is highly suitable for the Best Researcher Award. Her expertise in experimental high-energy physics and nuclear astrophysics, along with her involvement in global research collaborations, makes her a prime candidate to be recognized for her outstanding contributions to the scientific community.