Minyan Yan | Materials Science | Best Researcher Award

Pro. Minyan Yan | Materials Science | Best Researcher Award

Scopus Profile

Educational Details:

Prof. Minyan Yan earned a PhD in Materials Science and Engineering, specializing in hydrogen storage materials and systems. His doctoral research focused on experimental studies and theoretical modeling of materials aimed at advancing hydrogen storage technologies, specifically the Li-Mg-N-H systems.

Professional Experience

Prof. Yan is currently a faculty member at Taiyuan University of Science and Technology, China. He leads three significant research projects: one funded by the National Natural Science Foundation of China, another supported by the Fundamental Research Program of Shanxi Province, and a third sponsored by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi. With a strong background in both academic research and industry consultancy, Prof. Yan has contributed to three consultancy/industry projects, demonstrating his ability to bridge research and practical applications.

Research Interest

Prof. Yan’s research focuses on hydrogen storage materials, particularly lightweight Li-Mg-N-H systems. His work includes experimental research, theoretical modeling, and developing advanced technologies for improving hydrogen storage performance. He has made key contributions in understanding heat transfer limitations and transition metal effects on hydrogen storage at the electronic structure level, and he has developed a numerical model for Li-Mg-N-H systems that accounts for temperature and pressure fields.

Top Notable Publications

Zhang, H., Yan, M., Gong, C., Zhang, M., & Yan, X. (2024). Effect of V doping on the electronic structure and hydrogen storage performance of the Li-Mg-N-H material. Computational Materials Science, 236, 112850.
Citations: 0

Hu, X., Shen, K., Han, C., Yan, M., & Zhang, M. (2023). Uniform loading of ultrathin MoS2 nanosheets on hollow carbon spheres with mesoporous walls as efficient sulfur hosts for promising lithium-sulfur batteries. Journal of Alloys and Compounds, 965, 171427.
Citations: 6

Xing, Y., Zhang, M., Guo, J., Zhao, M., & Yan, M. (2023). CeO2/Ce2S3 modified carbon nanotubes as efficient cathode materials for lithium-sulfur batteries. Journal of Solid State Electrochemistry, 27(4), 1033–1044.
Citations: 7

Hu, X., Shen, K., Han, C., Yan, M., & Zhang, M. (2023). Ultra-thin MoO2 nanosheets loaded on hollow mesoporous carbon spheres promoting polysulfide adsorption and redox kinetics for lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 660, 130881.
Citations: 3

Hu, X., Shen, K., Han, C., Yan, M., & Zhang, M. (2022). Rational design of ultrathin Mo2C/C nanosheets decorated on mesoporous hollow carbon spheres as a multifunctional sulfur host for advanced Li-S batteries. Journal of Alloys and Compounds, 918, 165667.
Citations: 11

Xing, Y., Zhang, M., Guo, J., Hu, X., & Yan, M. (2022). Simple synthesis of PEG@CeO2-CNT/S composite materials as anode materials for lithium-sulfur batteries. Journal of Physics and Chemistry of Solids, 169, 110832.
Citations: 3

Yan, M., Gong, C., Zhang, H., & Zhang, M. (2022). First-Principles Study on the Effect of Ti Doping on Hydrogen Storage Performance of Li-Mg-N-H Materials. Journal of Synthetic Crystals, 51(2), 297–303.
Citations: 1

Yan, M., Sun, F., Liu, X., Wang, S., & Jiang, L. (2016). Hydrogen desorption properties of Mg(NH2)2-2LiH material influenced by ambient air. Chinese Journal of Rare Metals, 40(7), 666–672.
Citations: 0

Yan, M.-Y., Sun, F., Liu, X.-P., Wang, S.-M., & Jiang, L.-J. (2015). Effects of graphite content and compaction pressure on hydrogen desorption properties of Mg(NH2)2-2LiH based tank. Journal of Alloys and Compounds, 628, 63–67.
Citations: 13

Conclusion

In summary, Prof. Minyan Yan’s robust academic background, significant research contributions, successful project leadership, and engagement with industry position him as an exceptional candidate for the Best Researcher Award. His work has a meaningful impact on the field of materials science and addresses pressing challenges in hydrogen storage.

 

Yaseen Iqbal | Materials Science | Best Researcher Award

Prof. Yaseen Iqbal | Materials Science | Best Researcher Award

Scopus Profile

Orcid Profile

Educational Details:

Dr. Yaseen Iqbal holds a Ph.D. in Engineering Materials and Applied Physics from the University of Sheffield, UK (1993-1997), where he completed his thesis on “Early Stage Crystallization in Lithium Silicate-Based Glasses.” He possesses expertise in glass melting, microstructural and phase evolution, crystallization, XRD, EDS, optical microscopy, SEM, and TEM. Prior to this, he earned his M.Sc. in Physics from Gomal University, D.I. Khan, Pakistan (1984-1986), focusing on “Gamma Ray Spectroscopy of Eu152,” with expertise in nuclear physics and quantum mechanics. Dr. Iqbal completed his B.Sc. in Physics, Mathematics, and Statistics from the University of Peshawar, Pakistan (1981-1983).

Professional Experience

Dr. Iqbal has over 32 years of experience in teaching, research, and academic administration. He currently serves as the Dean of the Faculty of Numerical & Physical Sciences at the University of Peshawar (since October 2021) and was previously the Chairman of the Department of Physics (2015-2021). A tenured professor since 2017, he is also the founder and project director of the Materials Research Lab at UOP. His research collaborations have extended internationally, having held postdoctoral positions at the University of Sheffield (1997-2004) and worked as a visiting scientist at Boise State University, USA, and as a visiting academic at Sheffield. He is a Fellow of the Institute of Physics (UK) and holds Chartered Engineer status with the UK Engineering Council, in addition to being a Professional Engineer registered with the Pakistan Engineering Council.

Research Interest

Dr. Iqbal’s research spans materials science, particularly in glass-ceramics, electro-ceramics, and nanomaterials. He has conducted extensive work on phase evolution, crystallization, and microstructural properties of materials, with applications in energy, telecommunication, lasers, and environmental sciences. His projects include the synthesis of novel cover-glass for photovoltaic applications, electro-ceramics for microwave technologies, and rare-earth-doped nanomaterials for live-cell imaging and cancer dosimetry.

Research Contributions

Prof. Iqbal has authored over 140 ISI-indexed journal articles and contributed significantly to material science research through various projects. His key projects include the development of next-generation cover-glass for photovoltaics, electro-ceramics for microwave applications, and nanomaterials for medical and technological applications. He has also played a major role in establishing the Materials Research Laboratory at UOP and contributed to national initiatives, including the development of an engineering university in collaboration with Germany.

Top Notable Publications

Niaz, F., Shah, S. S., Hayat, K., Iqbal, Y., Oyama, M. (2024). “Utilizing rubber plant leaf petioles derived activated carbon for high-performance supercapacitor electrodes.” Industrial Crops and Products, 219, 119161.
Citations: 1

Amir, M., Chaghouri, H. A., Iqbal, Y., Ali, S., Amin, M. (2024). “Enhancement of CO gas sensing with ZnO nanostructures on MWCNTs films.” Ceramics International, 2024, pp. 1–12.
Citations: 0

Ali, H., Uzair, M., Iqbal, Y., Ali, M., Ahmad, W. (2023). “Electrical properties of Barium titanate and graphite incorporated PVA matrix composite (PVA-BaTiO3-G) nanofibers.” Materials Science and Engineering: B, 296, 116655.
Citations: 3

Fayaz, M., Ali, S., Bibi, S., Rooh, G., Kaewkhao, J. (2023). “Luminescence and energy transfer mechanism in Ce3+ and Gd3+ ions in bismuth borate glass.” Ceramics International, 49(15), pp. 24690–24695.
Citations: 5

Rehman, M. U., Manan, A., Ullah, A., Khan, M. A., Muhammad, R. (2023). “Structural, dielectric and complex impedance analysis of Pb-free BaTiO3-Bi(Mg0.5Ce0.5)O3 ceramics.” Journal of Alloys and Compounds, 947, 169575.
Citations: 18

Rehman, M. U., Manan, A., Khan, M. A., Ullah, A., Ahmad, A. S. (2023). “Improved energy storage performance of Bi(Mg0.5Ti0.5)O3 modified Ba0.55Sr0.45TiO3 lead-free ceramics for pulsed power capacitors.” Journal of the European Ceramic Society, 43(6), pp. 2426–2441.
Citations: 16

Uzair, M., Iqbal, Y., Hayat, K., Muhammad, R. (2023). “Sintering behavior, dielectric properties, and impedance spectroscopy of BaTiO3–Li2WO4.” Journal of Materials Science: Materials in Electronics, 34(7), 631.
Citations: 2

Khan, H., Iqbal, Y., Khan, M., Zeng, Y. (2022). “Optical absorption of tri-doped (Mo, Y, N)-TiO2 with first-principle calculations.” Modern Physics Letters B, 36(25), 2250132.
Citations: 0

Li, S., Li, C., Mao, M., Sun, S., Wang, D. (2022). “High Q×f values of Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 microwave dielectric ceramics for 5G/6G LTCC modules.” Journal of the European Ceramic Society, 42(13), pp. 5684–5690.
Citations: 45

Jiang, Y., Liu, H., Muhammad, R., Sun, R., Wang, D. (2022). “Broadband and high-efficiency of garnet-typed ceramic dielectric resonator antenna for 5G/6G communication application.” Ceramics International, 48(18), pp. 26922–26927.
Citations: 33

 

Conclusion

Prof. Yaseen Iqbal’s extensive qualifications, international research collaborations, and successful completion of numerous impactful projects make him an outstanding candidate for the Best Researcher Award. His contributions to materials science, especially in the development of innovative materials for photovoltaics and electro-ceramics, are highly significant. His leadership in establishing research facilities and mentoring future scholars further solidifies his case for the award