Assist. Prof. Dr. Mohsen Zahir Joozdani | Particle accelerators | Editorial Board Member

Assist. Prof. Dr. Mohsen Zahir Joozdani | Particle accelerators | Editorial Board Member

Assistant Professor | Niroo Research Institute (NRI) | Iran

Assist. Prof. Dr. Mohsen Zahir Joozdani is a distinguished researcher and academic whose work demonstrates remarkable contributions to the advancement of particle accelerators and applied physics. His research integrates advanced particle accelerators technology with experimental and computational methods, focusing on innovative developments that enhance scientific understanding and industrial applications. As a leading figure in the field of particle accelerators, he has authored and co-authored numerous research articles in reputed international journals, contributing significantly to the global scientific community. His professional achievements reflect a deep commitment to excellence in particle accelerators engineering and the pursuit of transformative solutions through interdisciplinary collaboration. Assist. Prof. Dr. Mohsen Zahir Joozdani’s research impact extends across diverse areas, where particle accelerators serve as the core foundation for breakthroughs in energy systems, material characterization, and radiation science. He has actively collaborated with renowned researchers and institutions, promoting cross-border scientific partnerships that advance the performance, safety, and sustainability of particle accelerators. Driven by innovation, his scholarly work has established new analytical frameworks and experimental methodologies, shaping the next generation of particle accelerators research. His scientific influence has not only elevated academic standards but also inspired a global audience of scientists and engineers dedicated to the advancement of particle accelerators and their real-world applications. His continuous dedication to the exploration of particle accelerators underlines his role as a visionary academic whose expertise continues to impact the future of scientific discovery. Scopus profile of 191 Citations, 16 Documents, 6 h-index.

Profile: Scopus

Featured Publication

1. A novel electromagnetic analysis of a TM02 mode dielectric assist accelerating structure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024.

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Professor of Emeritus | Institute of Science Tokyo | Japan

Prof. Dr. Kyosuke Ono is an esteemed physicist renowned for his pioneering contributions to Standard Model Physics and applied tribology. His distinguished career at the Tokyo Institute of Technology, where he served as a professor and later as an emeritus scholar, is marked by extensive research in Standard Model Physics that bridges fundamental particle behavior with mechanical system dynamics. Throughout his tenure, Prof. Dr. Ono made significant advances in understanding sub-monolayer lubricant physics within the head-disk interface, offering crucial insights that align the precision of Standard Model Physics principles with nanoscale mechanical phenomena. His scholarly work reflects deep engagement with the continuum mechanics framework and its extension into sub-monolayer film theory, where Standard Model Physics served as the theoretical backbone guiding molecular interactions and force distributions at the atomic level. Prof. Dr. Ono’s prolific academic output includes numerous publications in leading international journals such as Tribology Letters, ASME Transactions on Tribology, and ASME Transactions on Applied Mechanics. His h-index of 26 demonstrates substantial influence and citation within the global Standard Model Physics and mechanical engineering communities. His collaborations with the Storage Research Consortium in Japan and industrial contributions as a technical advisor for hard disk drive development underscore his ability to translate Standard Model Physics insights into practical innovations with lasting industrial relevance. Furthermore, as an editorial board member for Lubricants (EDPI), he has consistently advanced the dissemination of high-quality research in the interdisciplinary field of tribology and Standard Model Physics. Through his remarkable integration of theory, experimentation, and application, Prof. Dr. Kyosuke Ono has significantly shaped modern interpretations of nanoscale lubrication and dynamics. His work stands as a testament to the versatility of Standard Model Physics in solving real-world engineering problems and continues to inspire the next generation of researchers to extend the boundaries of applied and theoretical physics.

Profile: ORCID

Featured Publication

1. Ono, K. (2016–2019). Analytical study of slider vibrations and lubricant flow in subnanometer head-disk interface [Grant No. 16K06039]. Ministry of Education, Science and Technology, Tokyo, Japan.

Xin-Jian Wen | QCD Diagram | Best Researcher Award

Mr. Xin-Jian Wen | QCD Diagram | Best Researcher Award

Professor | Shanxi University | China

Mr. Xin-Jian Wen is a distinguished physicist renowned for his extensive contributions to Quantum Chromodynamics (QCD) and theoretical particle physics. His research is deeply rooted in exploring the properties of strongly interacting matter, the mechanisms underlying the QCD diagram transitions, and the behavior of strange quark matter in strong magnetic fields. Over the years, Mr. Xin-Jian Wen has built an influential academic profile through his pioneering studies on QCD diagram modeling, quark matter stability, and high-density nuclear matter, shaping global understanding in the field of QCD diagram phenomenology. His scholarly endeavors have led to numerous high-impact publications in leading journals such as Physical Review D, Physical Review C, and Journal of Physics G. Collaborating with eminent physicists from institutions including the University of Texas at El Paso and the Institute of High Energy Physics, he has advanced the precision of QCD diagram simulations and theoretical frameworks for quark-gluon interactions. His studies on the stability of strange quark matter and compact star structure through QCD diagram analyses have been particularly influential in connecting quantum field theory with astrophysical applications. Through sustained dedication, Mr. Xin-Jian Wen has become an integral contributor to theoretical high-energy physics, enriching the field of QCD diagram research and its broader implications in particle astrophysics. His approach integrates rigorous computational models with analytical perspectives, providing insights into QCD diagram transitions, nuclear phase structures, and the dynamics of matter under extreme conditions. His research continues to inspire advancements in QCD diagram studies, impacting both fundamental science and applied physics. With consistent academic productivity, strong collaborative networks, and impactful contributions to QCD diagram development, Mr. Xin-Jian Wen stands as a leading figure in experimental and theoretical high-energy studies. Scopus profile of 568 Citations, 44 Documents, 11 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Measuring the characterization of AFBR-S4N44P164M SiPM array at low temperatures for CEνNS detection. (2025). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

2. Quark–hadron deconfinement at zero temperature in a strong magnetic field. (2025). European Physical Journal Plus.

3. Stability analysis of magnetized quark matter in Tsallis statistics. (2025). Universe.

4. Deconfinement of magnetized quark matter in a quasiparticle description. (2025). International Journal of Modern Physics A.

Prof. Dr. Evangelos N. Gazis | Experimental Particle Physics | Best Researcher Award

Prof. Dr. Evangelos N. Gazis | Experimental Particle Physics | Best Researcher Award

Professor of Particle Physics | National Technical University of Athens | Greece

Prof. Dr. Evangelos N. Gazis, a distinguished scholar in Experimental Particle Physics, serves as a Professor at the National Technical University of Athens (NTUA) and holds guest professorships at CERN and Lund University. With a Scopus profile recording 4,942 citations, 108 documents, and an h-index of 24, his influence in the global Experimental Particle Physics community is profound. His extensive career integrates Experimental Particle Physics with nuclear, astro-particle, and accelerator physics, demonstrating a remarkable capacity for pioneering detector R&D, including gas detectors, micro-megas systems, and high-precision DAQ and control systems. Prof. Dr. Gazis has been instrumental in major CERN collaborations such as ATLAS, DELPHI, and CLIC, significantly contributing to the discovery of the Higgs boson and advancements in high-luminosity accelerator upgrades. His Experimental Particle Physics research extends into medical applications such as proton therapy and radioprotection, environmental and energy innovations, and cultural heritage preservation through nuclear technologies. As the Greek National Contact Physicist for multiple CERN collaborations and the Industrial Liaison Officer, he has fostered interdisciplinary partnerships between academia, industry, and government, demonstrating leadership in Experimental Particle Physics transfer and innovation. His contributions to education are equally remarkable, mentoring numerous students and promoting STEM engagement through ERASMUS+ initiatives that integrate Experimental Particle Physics into educational and technological frameworks. He has also authored monographs and co-authored over 1900 scientific papers, underscoring his lasting imprint on Experimental Particle Physics literature and global research dissemination. Prof. Dr. Gazis’s vision combines technical excellence with social and educational outreach, enhancing the societal relevance of Experimental Particle Physics across generations. His career stands as a benchmark of innovation, collaboration, and scientific integrity in Experimental Particle Physics, embodying professional excellence at an international level.

Profile: Scopus

Featured Publications

1. Simulation dosimetry studies for FLASH radiation therapy (RT) with ultra-high dose rate (UHDR) electron beam. (2024). Quantum Beam Science.

2. On the use of foam rubber for sealing applications. (2024). Tribology Letters.

3. Thermal diffusivity variation assessment on radio-frequency quadrupole Cu-OF copper due to proton irradiation. (2023). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms.

4. The HEV ventilator: At the interface between particle physics and biomedical engineering. (2022). Royal Society Open Science.

5. Methods used for gas tightness test and percent oxygen monitoring of the NSW Micromegas detectors of LHC-ATLAS experiment. (n.d.). Conference Paper.

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Post-Doctoral Researcher | University of Geneva | Switzerland

Dr. Atangana Likéné André Aimé is a distinguished researcher in High Energy Physics with expertise spanning Nuclear Physics, Particle Physics, and Radiation Protection. His academic background, marked by advanced degrees in Physics, reflects a strong foundation in theoretical and applied High Energy Physics. Professionally, he has served as a Research Officer at the Research Center of Nuclear Science and Technology, a Lecturer at the University of Yaoundé I, and a Post-Doctoral Researcher affiliated with the ATLAS Experiment at CERN, contributing to global advancements in High Energy Physics. His research interests include Quantum Chromodynamics, quark confinement, nuclear decay, and the application of machine learning to High Energy Physics phenomena. Dr. Atangana’s excellence in research has earned him notable honors, including the Best Researcher Award in High Energy Physics, academic scholarships, and leadership roles in scientific collaborations. His skills encompass symbolic computation, scientific programming, and Monte Carlo simulations, all pivotal in modern High Energy Physics modeling and analysis. With an active presence in international conferences and publications across prestigious journals like Nuclear Physics A, European Physical Journal C, and Modern Physics Letters A, he continues to advance High Energy Physics through innovative theoretical frameworks and computational methods. His dedication to advancing knowledge and mentoring the next generation of scientists underscores his professional integrity and global recognition. Scopus profile of 37 Citations, 24 Documents, 3 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Ahmadou, K., Atangana Likéné, A., Mbida Mbembe, S., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt. International Journal of Modern Physics E.

2. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, Oumar Bobbo, M., & Saidou. (2025). Analytical solutions of the 222Rn radon diffusion-advection equation through soil using Atangana–Baleanu time fractional derivative. Indian Journal of Physics.

3. Nga Ongodo, D., Atangana Likéné, A. A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times. The European Physical Journal C.

4. Nga Ongodo, D., Atangana Likéné, A. A., Zarma, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations. International Journal of Modern Physics E.

5. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, & Saidou. (2025). Angular momentum dependence of nuclear decay of radon isotopes by emission of 14C nuclei and branching ratio relative to α-decay. The European Physical Journal Plus.

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.

Dr. Abouzar Bahari | Nuclear Physics | Best Researcher Award

Dr. Abouzar Bahari | Nuclear Physics | Best Researcher Award

CEO | Bahari Research and Development | Oman

Dr. Abouzar Bahari is a distinguished scholar and researcher whose academic and professional journey reflects a deep commitment to Nuclear Physics, with a Ph.D. in Nuclear Physics from Payame-Noor University, alongside advanced studies in Genetics, Petroleum Engineering, and Mining Engineering, enabling him to bridge multidisciplinary fields through innovative research. His career includes leadership as CEO and Founder of Bahari Research and Development in Muscat, Oman, invited lectureships at Ferdowsi University of Mashhad, and extensive engineering experience in oil and gas production, all while advancing Nuclear Physics research through Monte Carlo simulations, particle radiation modeling, relativity, zero-point field analysis, and electromagnetic field applications in health sciences. His Nuclear Physics dissertation on predicting rock and fault failure has been recognized with prestigious awards, including a Best Researcher Award, and his consistent ranking among top graduates further validates his expertise. As a prolific contributor to scientific journals, reviewer, and editorial board member, Dr. Bahari has authored impactful works on earthquake precursors, neutron interactions, and Nuclear Physics-based simulations. His research interests span physics, cancer therapy with ultra-low frequency fields, and interdisciplinary applications of Nuclear Physics in geology, health, and energy systems. With advanced computational and simulation skills in MCNPX, MATLAB, Python, and visualization software, he combines technical mastery with scientific creativity. Overall, Dr. Bahari exemplifies how Nuclear Physics can integrate with diverse domains to generate solutions with global impact, and his career stands as a model of excellence in research, innovation, and education.

Profiles: Google Scholar | ORCID

Featured Publications

1. Bahari, A., & Seyed, A. B. (2007, April). Trust-region approach to find constants of Bourgoyne and Young penetration rate model in Khangiran Iranian gas field (SPE-107520-MS). SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina. Society of Petroleum Engineers.

2. Bahari, A., & Baradaran Seyed, A. (2009). Drilling cost optimization in a hydrocarbon field by combination of comparative and mathematical methods. Petroleum Science, 6(4), 451–463.

3. Moradi, H., Bahari, M. H., Sistani, M. B. N., & Bahari, A. (2010). Drilling rate prediction using an innovative soft computing approach. Scientific Research and Essays, 5(13), 1583–1588.

4. Bahari, M. H., Bahari, A., Moharrami, F. N., & Sistani, M. B. (2008). Determining Bourgoyne and Young model coefficients using genetic algorithm to predict drilling rate. Journal of Applied Sciences, 8(17), 3050–3054.

5. Hassan, B. M., Aboozar, B., & Hamidreza, M. (2011). Intelligent drilling rate predictor. International Journal of Innovative Computing, Information and Control, 7(4), 1425–1436.

Dr. Iulia Antohe | Particle Experiments | Best Researcher Award

Dr. Iulia Antohe | Particle Experiments | Best Researcher Award

Scientific Researcher at National Institute for Lasers, Plasma and Radiation Physics | Romania

Dr. Iulia Antohe is a dedicated scientist working in the field of lasers, plasmonics, and nanomaterials with strong expertise in Particle Experiments. She has developed advanced biosensors and sensors for healthcare, environmental, and industrial applications. Her Particle Experiments research integrates physics, chemistry, and engineering to design fiber optic and surface plasmon resonance systems. Through extensive collaborations, she advances innovative solutions for diagnostics and sensing platforms. Her Particle Experiments contributions strengthen interdisciplinary innovation. With a background in bioscience engineering, physics, and nanotechnology, Dr. Iulia Antohe combines analytical skills and creativity to address complex scientific challenges through Particle Experiments with real-world impact.

Professional Profiles

Google Scholar Profile | ORCID Profile

Education 

Dr. Iulia Antohe has a strong academic background with achievements rooted in Particle Experiments. She holds a Ph.D. in Bioscience Engineering from KU Leuven, focusing on fiber optic surface modifications for improved plasmonic biosensing. Her education includes master and bachelor programs in physics with emphasis on nanostructures, optoelectronics, and medical physics. She gained international experience through visiting research roles in Spain and Belgium, enhancing her understanding of Particle Experiments in nanoscience and bioengineering. This educational pathway developed her expertise in synthesis, characterization, and application of nanomaterials, preparing her to contribute advanced Particle Experiments approaches to modern sensing and diagnostic technologies.

Experience 

Dr. Iulia Antohe has extensive professional experience in Particle Experiments within advanced laser and biosensor research. At the National Institute for Lasers, Plasma and Radiation Physics, she progressed from early-stage researcher to senior scientific researcher. Her roles include development of FO-SPR sensors, gas sensors, and biofunctionalized nanomaterials, combining multidisciplinary Particle Experiments with biomedical, environmental, and industrial objectives. She managed national and international projects, supervised students, and authored impactful publications. Her earlier work as a Marie Curie fellow in Belgium strengthened her expertise in biosensing and assay development. Through Particle Experiments, she continues to advance cutting-edge sensor technologies and contribute to the global scientific community.

Research Interest 

Dr. Iulia Antohe’s research interests center around Particle Experiments in sensors, nanomaterials, and plasmonic platforms. She explores the synthesis and functionalization of magnetic and gold particles, integrating them into fiber optic systems for healthcare diagnostics, food safety, and environmental monitoring. Her Particle Experiments expand into bioassay development, polymer-based sensing, and hybrid material applications. She is dedicated to bridging the gap between fundamental research and applied technologies, making Particle Experiments vital for innovative solutions. This includes advanced optical fiber plasmonic sensors, responsive polymers, and smart diagnostic platforms that support rapid, sensitive, and reliable measurements across multiple scientific and industrial domains.

Award and Honor

Dr. Iulia Antohe has received multiple awards and honors recognizing her Particle Experiments excellence. Among them are Best Poster Awards at international conferences, Young Scientist Awards, and special mentions for outstanding research contributions. She has been honored as an IOP Outstanding Reviewer for Nanotechnology and Materials Research Express, acknowledging her leadership in scientific quality. Her Particle Experiments-based projects received funding from prestigious institutions, including L’Oréal-UNESCO for Women in Science. These recognitions validate her commitment to advancing knowledge through Particle Experiments and highlight her role as a prominent contributor in multidisciplinary scientific research communities worldwide.

Research Skill

Dr. Iulia Antohe possesses a versatile set of research skills tailored for Particle Experiments innovation. She is proficient in nanomaterial synthesis, including gold and magnetic particles, thin-film deposition, and polymer coatings. Her analytical skills cover structural, morphological, electrical, and optical characterization essential for advanced Particle Experiments. She excels in biosensor design, fiber optic integration, and assay optimization for medical and environmental diagnostics. Project management, scientific writing, mentoring, and international collaboration further strengthen her Particle Experiments impact. Her ability to translate fundamental findings into applied sensing technologies reflects her technical precision, innovation, and leadership in complex multidisciplinary research environments.

Publication Top Notes 

Title: Smart design of fiber optic surfaces for improved plasmonic biosensing
Journal: New Biotechnology
Authors: I Arghir, F Delport, D Spasic, J Lammertyn
Citation: 90

Title: Improved surface plasmon resonance biosensing using silanized optical fibers
Journal: Sensors and Actuators B: Chemical
Authors: I Arghir, D Spasic, BE Verlinden, F Delport, J Lammertyn
Citation: 63

Title: A polyaniline/platinum coated fiber optic surface plasmon resonance sensor for picomolar detection of 4-nitrophenol
Journal: Scientific Reports
Authors: I Antohe, I Iordache, VA Antohe, G Socol
Citation: 42

Title: Nanoscale patterning of gold-coated optical fibers for improved plasmonic sensing
Journal: Nanotechnology
Authors: I Antohe, D Spasic, F Delport, J Li, J Lammertyn
Citation: 42

Title: Thermal annealing of gold coated fiber optic surfaces for improved plasmonic biosensing
Journal: Sensors and Actuators B: Chemical
Authors: I Antohe, K Schouteden, P Goos, F Delport, D Spasic, J Lammertyn
Citation: 41

Title: Cadmium ions’ trace-level detection using a portable fiber optic—Surface plasmon resonance sensor
Journal: Biosensors
Authors: BG Şolomonea, LI Jinga, VA Antohe, G Socol, I Antohe
Citation: 32

Title: Sensitive pH Monitoring Using a Polyaniline-Functionalized Fiber Optic—Surface Plasmon Resonance Detector
Journal: Sensors
Authors: I Antohe, LI Jinga, VA Antohe, G Socol
Citation: 29

Title: Transparent indium zinc oxide thin films used in photovoltaic cells based on polymer blends
Journal: Thin Solid Films
Authors: C Besleaga, L Ion, V Ghenescu, G Socol, A Radu, I Arghir, C Florica, ...
Citation: 25

Title: Synthesis and anti-melanoma activity of L-cysteine-coated iron oxide nanoparticles loaded with doxorubicin
Journal: Nanomaterials
Authors: LI Toderascu, LE Sima, S Orobeti, PE Florian, M Icriverzi, VA Maraloiu, ...
Citation: 22

Title: Production and characterization of CdTe wire arrays for hybrid inorganic/organic photovoltaic cells
Journal: Digest Journal of Nanomaterials and Biostructures
Authors: C Florica, I Arghir, L Ion, I Enculescu, VA Antohe, A Radu, M Radu, ...
Citation: 15

Title: Study of a new composite based on SnO2 nanoparticles—P3HT: PC71BM co-polymer blend, used as potential absorber in bulk heterojunction photovoltaic cells
Journal: Materials Today Communications
Authors: AI Radu, VA Antohe, S Iftimie, I Antohe, M Filipescu, A Radu, D Coman, ...
Citation: 10

Title: Study of electrical and optical properties of ITO/PEDOT/P3HT: PCBM (1: 1)/LiF/Al photovoltaic structures
Journal: Journal of Optoelectronics and Advanced Materials
Authors: S Iftimie, A Majkic, C Besleaga, VA Antohe, A Radu, M Radu, I Arghir, ...
Citation: 8

Title: Morphological, Optical and Electrical Properties of RF-Sputtered Zinc Telluride Thin Films for Electronic and Optoelectronic Applications
Journal: AIP Advances
Authors: A.M. Panaitescu, I. Antohe, A.M. Răduță, S. Iftimie, Ș. Antohe, C.N ...
Citation: 7

Title: Aluminum doped zinc oxide nanoplatelets based sensor with enhanced hydrogen sulfide detection
Journal: Scientific Reports
Authors: B Ydir, A Ajdour, I Antohe, G Socol, M Socol, LI Toderascu, D Saadaoui, ...
Citation: 5

Title: Effect of the cadmium telluride deposition method on the covering degree of electrodes based on copper nanowire arrays
Journal: Applied Sciences
Authors: AM Panaitescu, I Antohe, C Locovei, S Iftimie, Ş Antohe, L Piraux, ...
Citation: 5

Title: Shaping in the Third Direction; Fabrication of Hemispherical Micro-Concavity Array by Using Large Size Polystyrene Spheres as Template for Direct Self-Assembly of Small Size …
Journal: Polymers
Authors: I Sandu, CT Fleaca, F Dumitrache, BA Sava, I Urzica, I Antohe, ...
Citation: 5

Title: Shaping in the Third Direction; Synthesis of Patterned Colloidal Crystals by Polyester Fabric-Guided Self-Assembly
Journal: Polymers
Authors: I Sandu, CT Fleaca, F Dumitrache, BA Sava, I Urzica, I Antohe, ...
Citation: 5

Title: Shaping in the Third Direction: Self-Assembly of Convex Colloidal Photonic Crystals on an Optical Fiber Tip by Hanging Drop Method
Journal: Polymers
Authors: I Sandu, I Antohe, CT Fleaca, F Dumitrache, I Urzica, S Brajnicov, ...
Citation: 4

Title: Cobalt ions detection using an evanescent wave optical fiber sensor
Journal: Romanian Reports in Physics
Authors: I Antohe
Citation: 4

Title: Mechanism of nonpolar model substances to inhibit primary gushing induced by hydrophobin HFBI
Journal: Journal of Agricultural and Food Chemistry
Author(s): Z Shokribousjein, D Riveros Galan, P Losada-Pérez, P Wagner, ...
Citation: 4

Conclusion

Dr. Iulia Antohe’s career exemplifies excellence in Particle Experiments through education, research, and innovation. Her work integrates advanced physics, materials science, and engineering to create impactful sensor technologies addressing real-world challenges. Her Particle Experiments contributions enhance healthcare diagnostics, environmental monitoring, and food safety systems. With international training, project leadership, and recognized expertise, she stands out as a scientist who bridges fundamental discovery with applied solutions. The consistent integration of Particle Experiments in her work reflects a commitment to progress, collaboration, and scientific integrity, ensuring that her contributions will continue to influence and inspire future developments in modern sensing technologies.

Prof. Alexander Malkin | Structure of Matter | Best Researcher Award

Prof. Alexander Malkin | Structure of Matter | Best Researcher Award

Prof. Alexander Malkin, A.V. Topchiev Institute of Petrochemical Syntghesis RAS, Russia

Prof. Alexander Malkin, born on January 31, 1937, in Moscow, Russia, is a renowned expert in polymer physics and rheology. He graduated with honors from the Institute of Chemical Engineering, Moscow, in 1959 and earned his Ph.D. in 1965, followed by a Doctor of Sciences degree in 1971. Prof. Malkin has held significant positions at the Institute of Petrochemical Synthesis and the Research Institute for Plastics, where he led various departments focused on polymer physics, mechanics, and rheology.

 

PROFILE

Orcid

Google Scholar

Education

Prof. Alexander Malkin graduated with honors from the Institute of Chemical Engineering, Moscow (Technical University) in 1959. He continued his academic journey with a focus on polymer science, earning his Ph.D. in 1965 with a dissertation on polymer physics and mechanics. In 1971, he achieved the degree of Doctor of Sciences in Physics and Mechanics of Polymers, solidifying his expertise and leadership in the field.

Professional Experience

1960 – 1962: Engineer and junior research fellow at the Research Institute of Chemical Engineering, focusing on extrusion technology.

1962 – 1975: Worked at the Institute of Petrochemical Synthesis, Academy of Sciences of the USSR, as a post-graduate student and later in the Laboratory of Polymer Rheology under Prof. G.V. Vinogradov.

1975 – 2001: Headed various departments at the Research Institute for Plastics, including the Laboratory of RIM-processes, the Department of Physical Chemistry of Polymers, and the Department of Polymer Physics, Mechanics, and Rheology.

2001 – 2008: Research leader and consultant at Cape Peninsula Institute of Technology, Cape Town, South Africa.

2008 – Present: Principal Researcher at the Institute of Petrochemical Synthesis, Russian Academy of Sciences.

Academic and Teaching Roles

1980 – 1990: Invited Professor and Lecturer at Moscow State University, teaching courses on Polymer Mechanics and Technology.

1992: Visiting Professor at Louisiana State University, Baton Rouge, LA, USA.

2002 – 2015: Adjunct Professor and Research Coordinator at the Flow Process Research Centre of the Cape Peninsula University of Technology, South Africa.

Professional Memberships and Honors

1988 – Present: Delegate in the International Organization of the Russian (formerly USSR) Society of Rheology.

1988 – Present: Member of the American Society of Rheology.

1994: Active Member of the New York Academy of Sciences.

2005: Honorable Speaker for Changchung Institute of Applied Chemistry, Chinese Academy of Sciences.

Top Notable Publications

Rheology of Polymers: Viscoelasticity and Flow of Polymers
Authors: G.V. Vinogradov, A.Y. Malkin
Publisher: Mir
Year: 1980
Pages: 1078

Concepts, Methods, and Applications
Authors: A.Y. Malkin, A.I. Isayev
Journal: Applied Rheology
Volume: 16
Issue: 4
Pages: 240-241
Year: 2006
DOI: 10.1515/AR.2006.16.4.240

Viscoelastic Properties and Flow of Narrow Distribution Polybutadienes and Polyisoprenes
Authors: G.V. Vinogradov, A.Ya. Malkin, Y.G. Yanovskii, E.K. Borisenkova, …
Journal: Journal of Polymer Science Part A‐2: Polymer Physics
Volume: 10
Issue: 6
Pages: 1061-1084
Year: 1972

Rheological Properties of Anisotropic Poly(para‐benzamide) Solutions
Authors: S.P. Papkov, V.G. Kulichikhin, V.D. Kalmykova, A.Y. Malkin
Journal: Journal of Polymer Science: Polymer Physics Edition
Volume: 12
Issue: 9
Pages: 1753-1770
Year: 1974

Rheology Fundamentals
Author: A.Y.A. Malkin
Publisher: ChemTec Publishing
Year: 1994
Pages: 276

Physical Chemistry of Highly Concentrated Emulsions
Authors: R. Foudazi, S. Qavi, I. Masalova, A.Y. Malkin
Journal: Advances in Colloid and Interface Science
Volume: 220
Pages: 78-91
Year: 2015
DOI: 10.1016/j.cis.2015.02.001

Some Conditions for Rupture of Polymer Liquids in Extension
Authors: A.Y. Malkin, C.J.S. Petrie
Journal: Journal of Rheology
Volume: 41
Issue: 1
Pages: 1-25
Year: 1997
DOI: 10.1122/1.550796

The Rheology of Gelatin Hydrogels Modified by κ-Carrageenan
Authors: S.R. Derkach, S.O. Ilyin, A.A. Maklakova, V.G. Kulichikhin, A.Y. Malkin
Journal: LWT – Food Science and Technology
Volume: 63
Issue: 1
Pages: 612-619
Year: 2015
DOI: 10.1016/j.lwt.2015.03.036

Reologija Polimerov
Authors: G.V. Vinogradov, A.Y. Malkin
Publisher: Izd. Chimija
Year: 1977
Pages: 168

Asphaltenes in Heavy Crude Oil: Designation, Precipitation, Solutions, and Effects on Viscosity
Authors: S. Ilyin, M. Arinina, M. Polyakova, G. Bondarenko, I. Konstantinov, …
Journal: Journal of Petroleum Science and Engineering
Volume: 147
Pages: 211-217
Year: 2016
DOI: 10.1016/j.petrol.2016.07.022

Effect of Droplet Size on the Rheological Properties of Highly-Concentrated W/O Emulsions
Authors: A.Y. Malkin, I. Masalova, P. Slatter, K. Wilson
Journal: Rheologica Acta
Volume: 43
Pages: 584-591
Year: 2004
DOI: 10.1007/s00397-004-0371-8