Assistant Professor at Khalsa College | India
Dr. Hardeep kaur is a dedicated researcher in organic chemistry with expertise in drug discovery, fluorescence probes, and computational studies. Through innovative Experimental Methods, she integrates traditional synthesis with in silico modeling to address health challenges like malaria and tuberculosis. Her work on molecular recognition of heavy metals and biological targets highlights the power of Experimental Methods in both diagnostics and therapeutics. As an assistant professor at khalsa college, she combines academic guidance, mentoring, and research leadership with extensive use of Experimental Methods. Her collaborations have advanced applied chemistry, bridging theoretical understanding with practical Experimental Methods. Her consistent contributions and awards demonstrate excellence and dedication, reflecting her continuous pursuit of innovation through rigorous Experimental Methods.
Professional Profiles
Scopus Profile | ORCID Profile
Education
Dr. Hardeep kaur holds a strong academic foundation in chemistry, with advanced training that shaped her expertise in Experimental Methods. From undergraduate honors to postgraduate specialization and doctoral research, her education emphasized organic synthesis, molecular design, and mechanistic studies through Experimental Methods. Guided by leading chemists, she developed skills in complex reaction pathways, spectroscopic analysis, and computational approaches that rely heavily on Experimental Methods. Her academic journey refined critical thinking and innovative strategies, incorporating both theoretical principles and Experimental Methods to solve chemical and biological challenges. This solid educational background empowers her to teach, supervise, and inspire future scientists while continuing her own research through advanced Experimental Methods in organic and medicinal chemistry.
Experience
Assistant professor at khalsa college, Dr. Hardeep kaurhas excelled in teaching, research, and departmental leadership using Experimental Methods as a central tool. She manages academic programs, oversees innovation initiatives, and contributes to institutional committees while guiding students in Experimental Methods. Her professional journey includes supervising numerous postgraduate theses and coordinating seminars, ensuring students develop hands-on skills with modern Experimental Methods. She actively collaborates with academic and industrial partners to translate Experimental Methods into practical solutions, fostering interdisciplinary projects. This extensive professional experience demonstrates her capacity to merge classroom instruction, administrative leadership, and high-impact research into a seamless practice of chemistry through consistent application of Experimental Methods.
Research Interest
Dr. Hardeep kaur’s research interests revolve around drug discovery, bioactive heterocycles, molecular sensors, and computational chemistry, all enriched by Experimental Methods. She focuses on designing antiplasmodial and antimycobacterial compounds, employing Experimental Methods to optimize synthesis and evaluate biological mechanisms. Her work on fluorescence probes for heavy metal detection utilizes Experimental Methods to develop selective and sensitive systems for environmental and biomedical use. Additionally, her research explores Density Functional Theory (DFT) to complement Experimental Methods, providing mechanistic insight. By integrating Experimental Methods with theoretical modeling, her investigations advance both academic understanding and translational applications in medicinal chemistry, environmental sensing, and advanced material development, maintaining Experimental Methods as a foundation of her scientific contributions.
Award and Honor
Dr. Hardeep kaur has earned recognition for academic excellence, impactful research, and innovation in chemistry, highlighting her skill in Experimental Methods. Her honors include gold medals, competitive fellowships, and international article citations that showcase the influence of her Experimental Methods-based discoveries. Highly cited works on antimalarial hybrids and chemical sensors confirm the global relevance of her Experimental Methods in both healthcare and analytical sciences. Prestigious awards from scientific societies acknowledge her leadership and innovative approaches that combine creativity with rigorous Experimental Methods. Through national and international appreciation, her career reflects a consistent pattern of achievement, driven by precise, reproducible, and groundbreaking Experimental Methods that set benchmarks in modern organic and medicinal chemistry.
Research Skill
Dr. Hardeep kaur possesses advanced research skills in organic synthesis, analytical techniques, and computational modeling, all grounded in Experimental Methods. She is proficient with spectroscopic tools, chromatographic systems, and molecular docking programs, applying Experimental Methods to characterize compounds, validate hypotheses, and interpret biological activities. Her ability to manage sensitive reagents, inert atmospheres, and reaction optimization demonstrates mastery in practical Experimental Methods. Additionally, her integration of data analysis, visualization, and presentation ensures Experimental Methods translate into impactful publications and collaborations. This comprehensive skill set allows her to solve complex chemical problems, mentor future researchers, and develop novel strategies, all underpinned by her expertise in Experimental Methods that bridge innovation and reproducibility.
Publication Top Notes
Title: Development of sensitive napthaquinone-pyridine hydrazone based chemosensor for the colorimetric detection of Cu2+ ion in an aqueous solution
Year: 2025
Citations: 2
Title: Exploring the anticancer potential of Lasia spinosa rhizomes: insights from molecular docking and DFT investigations on chlorogenic acid and beyond
Year: 2024
Citations: 0
Conclusion
Dr. Hardeep kaur’s career reflects a harmonious integration of education, research, teaching, and collaboration, powered by Experimental Methods. Her dedication to advancing drug discovery, molecular sensing, and applied organic chemistry showcases the transformative potential of well-designed Experimental Methods. Through her leadership, students and colleagues gain exposure to rigorous Experimental Methods that foster innovation and integrity in science. Her achievements across academia, publications, and recognition confirm her role as a leading contributor to modern chemistry, where Experimental Methods not only support discovery but drive scientific evolution. Ultimately, her journey demonstrates how perseverance, creativity, and meticulous Experimental Methods shape impactful careers and contribute meaningfully to global scientific advancement.