Assist. Prof. Dr. Milad Abdelnabi Salem | Social Sciences | Best Researcher Award

Assist. Prof. Dr. Milad Abdelnabi Salem | Social Sciences | Best Researcher Award

Assistant Professor | Community College of Qatar | Qatar

Assist. Prof. Dr. Milad Abdelnabi Salem is a distinguished academic in the field of management and logistics, whose contributions to Social Sciences reflect a profound commitment to research excellence and educational development. His academic journey encompasses a Ph.D. in Operations Management, a Master’s in Management and Organisation, and a Bachelor’s in Business Management, which collectively underpin his extensive engagement with Social Sciences. Currently serving as an Assistant Professor at the Community College of Qatar, he has previously held academic and managerial positions across Malaysia and Libya, demonstrating his expertise in teaching and curriculum development within Social Sciences. His research interests span Supply Chain Management, Total Quality Management, Environmental Sciences, Human Resource Management, and Operations Management, each deeply interlinked with Social Sciences. Recognized with numerous awards, including the Outstanding Lecturer Award and a Fellowship from the Australian Academy of Business Leadership, his academic influence extends internationally. Assist. Prof. Dr. Milad’s research skills include advanced data analysis using SPSS and SEM, e-learning applications, and quantitative methodologies — essential competencies in the Social Sciences. His publications in peer-reviewed and Scopus-indexed journals highlight his commitment to integrating sustainability, competitiveness, and ethical leadership within organizational frameworks. In conclusion, Assist. Prof. Dr. Milad Abdelnabi Salem exemplifies excellence in Social Sciences through his scholarly achievements, research leadership, and dedication to developing innovative approaches that enhance global understanding and practical applications of management within the broader context of Social Sciences.

Profile: Google Scholar

Featured Publications

1. Basha, M. B., Mason, C., Shamsudin, M. F., Hussain, H. I., & Salem, M. A. (2015). Consumers attitude towards organic food. Procedia Economics and Finance, 31, 444–452.

2. Salem, M. A., Hasnan, N., & Osman, N. H. (2012). Balanced scorecard: Weaknesses, strengths, and its ability as performance management system versus other performance management systems. Journal of Environment and Earth Science, 2(2), 1–10.

3. Salem, M. A., Shawtari, F., Shamsudin, M. F., & Hussain, H. B. I. (2018). The consequences of integrating stakeholder engagement in sustainable development (environmental perspectives). Sustainable Development, 26(3), 255–268.

4. Salem, M. A., Shawtari, F. A., Shamsudin, M. F., & Hussain, H. I. (2016). The relation between stakeholders’ integration and environmental competitiveness. Social Responsibility Journal, 12(4), 755–769.

5. Shawtari, F. A., Salem, M. A., & Bakhit, I. (2018). Decomposition of efficiency using DEA window analysis: A comparative evidence from Islamic and conventional banks. Benchmarking: An International Journal, 25(6), 1681–1705.

Dr. M. Ramamurthy | Experimental Methods | Best Researcher Award

Dr. M. Ramamurthy | Experimental Methods | Best Researcher Award

Assistant Professor | AMET University | India

Dr. M. Ramamurthy is a highly accomplished academician and researcher with extensive experience in Experimental Methods applied to mechanical and manufacturing engineering. His professional journey spans across several reputed engineering institutions, where he has contributed to Experimental Methods in teaching, research, and curriculum design. Holding a Ph.D. from Anna University with a focus on friction stir welding, Dr. M. Ramamurthy has published multiple papers in international journals emphasizing Experimental Methods for optimizing welding parameters, material characterization, and process analysis. His expertise extends to Experimental Methods in advanced materials, composite fabrication, and surface modification, reflecting a strong grasp of both theoretical and practical domains. He has participated in numerous conferences and workshops, showcasing his innovative applications of Experimental Methods in materials science and production engineering. Recognized for his contributions, he holds patents and authored book chapters on Experimental Methods for sustainable material development. His professional affiliations include ISTE, IAENG, and PMAI, demonstrating his commitment to continuous learning and collaboration. His research skills encompass Experimental Methods involving friction stir processes, multi-objective optimization, and mechanical testing. Dr. M. Ramamurthy’s awards and honors reflect his dedication to innovation and knowledge dissemination in Experimental Methods. With a balanced blend of academic and industrial exposure, he consistently integrates Experimental Methods into education, research, and technology development. In conclusion, Dr. M. Ramamurthy’s distinguished career exemplifies excellence in Experimental Methods, advancing engineering practices and inspiring future researchers.

Profiles: Google Scholar | ORCID

Featured Publications

1. Ramamurthy, M., Balasubramanian, P., Senthilkumar, N., & G. (2022). Influence of process parameters on the microstructure and mechanical properties of friction stir welds of AA2014 and AA6063 aluminium alloys using response surface methodology. Materials Research Express, 9, 70.

2. Senthilkumar, N., Thanikasalam, A., Stalin, K., Ramamurthy, M., & Lazar, P. (2024). Mechanical characterization of epoxy-nanoclay-kenaf fiber polymer composites. International Conference on Advanced Materials Manufacturing and Structures.

3. Ramamurthy, M., & Balasubramanian, P. (2022). Parametric optimization in friction stir joining of AA2014 and AA6061 alloys through entropy based multiobjective GRA approach. Materials Today: Proceedings, 59, 1249–1255.

4. Ramamurthy, M., Vasanthkumar, N. P., Perumal, G., & Senthilkumar, N. (2025). Formulation and features of chitosan and natural fiber blended bio-composite towards environmental sustainability. Journal of Environmental Nanotechnology, 14(1), 104–112.

5. Senthilkumar, N., Thanikasalam, A., Stalin, K., Ramamurthy, M., & Lazar, P. (2024). Thermal studies on palm fibre and rice husk ash-reinforced epoxy resin composite. International Conference on Advanced Materials Manufacturing and Structures.

Dr. Kammogne Djoum Nana Anicet | Physics and Astronomy | Best Researcher Award

Dr. Kammogne Djoum Nana Anicet | Physics and Astronomy | Best Researcher Award

Assistant Lecturer | African Institute of Mathematical Sciences | Cameroon

Dr. Kammogne Djoum Nana Anicet is a distinguished scholar in Physics and Astronomy whose academic and research journey reflects deep expertise in theoretical condensed matter physics. Having earned his Ph.D. with highest distinction from the University of Dschang, his work in Physics and Astronomy encompasses teaching, research, and numerous publications in top journals such as Physics Letters A and Chinese Journal of Physics. His professional experience includes roles as a teaching assistant at AIMS Cameroon and lecturer at the University of Dschang, where he taught electromagnetism, electrostatics, quantum physics, and solid-state physics—core pillars of Physics and Astronomy. Dr. Kammogne’s research explores quantum transitions, level-crossing phenomena, and spontaneous emission models, all vital areas in modern Physics and Astronomy. His outstanding performance has earned him multiple awards, including Best Researcher recognitions from ScienceFather, Scifat, and WorldTopScientists, along with a Presidential Award for Excellence. His skills in Mathematica, Python, LaTeX, and computational tools like Qutip enhance his research capabilities in Physics and Astronomy. With active participation in international conferences and collaborations, Dr. Kammogne continues to contribute innovative insights to the global Physics and Astronomy community. His dedication, technical proficiency, and analytical acumen define him as a leading researcher advancing frontiers in Physics and Astronomy, where his commitment to knowledge and excellence embodies the essence of scientific achievement and innovation in this dynamic field.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kammogne, A. D., Kenmoe, M. B., & Fai, L. C. (2022). Statistics of interferograms in three-level systems. Physics Letters A, 425, 127872.

2. Kammogne, A. D., Issofa, N., & Fai, L. C. (2024). Non-resonant exponential Nikitin models with decay. Chinese Journal of Physics.

3. Kammogne, A. D., & Fai, L. C. (2025). Spontaneous emission in an exponential model. Chinese Journal of Physics.

4. Tchapda, A. B., Kenmoe, M. B., & Fai, L. C. (2017). Landau-Zener transitions in a qubit/qutrit periodically driven in both longitudinal and transverse directions. arXiv preprint arXiv:1708.04184.

5. Kammogne, A. D. (2025). Effect of spontaneous emission on a tanh model. Chinese Journal of Physics.

Dr. Aman Bhatia | Plasma Physics | Best Researcher Award

Dr. Aman Bhatia | Plasma Physics | Best Researcher Award

Postdoctoral Fellow | Institute for Plasma Research | India

Dr. Aman Bhatia, a distinguished researcher in Plasma Physics, has demonstrated outstanding contributions to the field through her extensive work on laser–plasma interactions, nonlinear optics, and theoretical plasma modeling. With a Doctorate in Plasma Physics from Dr. B. R. Ambedkar national institute of technology, jalandhar, Her currently serves as a postdoctoral fellow at the institute for plasma research, ahmedabad. Her Plasma Physics expertise is reflected in numerous publications across reputed journals like Physics of Plasmas, Optik, and The European Physical Journal Plus. Dr. Bhatia’s professional experience encompasses both teaching and advanced computational research, with proficiency in Plasma Physics simulation tools such as SMILEI, MATLAB, Mathematica, and Python. Her active engagement in international conferences and workshops, including ICTP–IAEA Fusion Energy Schools, has further deepened her understanding of Plasma Physics phenomena and their applications. Recognized for her excellence, Her has received several prestigious awards, including Best Poster Presentation honors and an Outstanding Research Award from NIT Jalandhar. Her research interests lie in nonlinear wave propagation, second harmonic generation, and terahertz radiation in Plasma Physics systems. With exceptional research skills in analytical modeling, computational simulations, and laser–plasma coupling studies, Dr. Bhatia continues to advance the boundaries of Plasma Physics with innovative theoretical insights and practical relevance. Her dedication, scholarly rigor, and academic achievements mark him as a rising figure in modern Plasma Physics. 64 Citations, 9 Documents, 5 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. Bhatia, A., Walia, K., & Singh, A. (2021). Influence of self-focused Laguerre–Gaussian laser beam on second harmonic generation in collisionless plasma having density transition. Optik, 245, 167747.

2. Bhatia, A., Walia, K., & Singh, A. (2021). Second harmonic generation of intense Laguerre–Gaussian beam in relativistic plasma having an exponential density transition. Optik, 244, 167608.

3. Bhatia, A., Walia, K., & Singh, A. (2022). Laguerre–Gaussian laser beam guiding and its second harmonics in plasma having density ramp. Physics of Plasmas, 29(9).

4. Kad, P., Choudhary, R., Bhatia, A., Walia, K., & Singh, A. (2022). Study of two cross focused Bessel–Gaussian laser beams on electron acceleration in relativistic regime. Optik, 271, 170117.

5. Bhatia, A., Jangir, N., Kad, P., Walia, K., & Singh, A. (2022). Second harmonic generation of zeroth-order Bessel–Gaussian laser beam in collisionless plasma. Optik, 269, 169867.

Dr. Bin Song | Experimental Methods | Best Researcher Award

Dr. Bin Song | Experimental Methods | Best Researcher Award

Associate Professor | Southwest Petroleum University | China

Dr. Bin Song, an accomplished scholar in Experimental Methods, holds a Doctor of Engineering and serves as an Associate Researcher and Master’s Supervisor at Southwest Petroleum University. His work in Experimental Methods has greatly advanced gas safety and integrity assessment, hydrogen storage and transportation, and efficient utilization processes. Through his innovative use of Experimental Methods, he has produced over twenty high-level publications, sixteen of which are SCI-indexed, demonstrating his consistent excellence in research dissemination. His involvement in Experimental Methods also extends to securing four national invention patents, one of which achieved successful technological transformation, showcasing his strong applied research capabilities. Furthermore, he has contributed to the compilation of two industry and township standards, reinforcing the practical impact of his Experimental Methods-based investigations. His recognition in the scientific community stems from his ability to integrate Experimental Methods with engineering innovation, improving safety, performance, and sustainability in petroleum and hydrogen systems. His analytical expertise, technical precision, and interdisciplinary collaboration highlight his strong research skills and commitment to advancing Experimental Methods for industrial and academic excellence. Dr. Bin Song continues to inspire future researchers through his dedication to innovation, knowledge transfer, and technological development in Experimental Methods-driven research. 207 Citations, 18 Documents, 7 h-index.

Profile: Scopus

Featured Publication

1. Novel method for optimizing emergency response facility layouts in gas pipeline networks. (2025). Journal of Pipeline Systems Engineering and Practice.

Dr. Naveena Gadwala | Physics and Astronomy | Best Researcher Award

Dr. Naveena Gadwala | Physics and Astronomy | Best Researcher Award

Assistant Professor | Aurora Deemed University | Iran

Dr. Naveena Gadwala is an accomplished researcher in Physics and Astronomy with expertise in material science, spintronic devices, and nanomaterials, having completed her Ph.D. in Physics with a focus on multifunctional materials for spintronics and sensor applications. Her educational background spans physics and condensed matter physics, supported by a solid foundation in mathematics and computer science. Professionally, she has served as an Assistant Professor of Physics and worked as a Research Assistant on a prestigious DST-SERB project, where she advanced the development of rare-earth doped multifunctional materials. Her research interests in Physics and Astronomy include condensed matter physics, spintronics, nanoferrites, structural and electrical properties of advanced materials, and applications in sensors and energy storage, with multiple international publications in reputed journals such as Journal of Materials Science, Brazilian Journal of Physics, and Physics Status Solidi B. Dr. Gadwala has also participated in several national and international conferences, presenting her research on Physics and Astronomy themes like nanomaterials, applied physics, and material science. She has cleared the Telangana State Eligibility Test, demonstrating strong academic and research skill sets in Physics and Astronomy, and her work emphasizes synthesis, structural analysis, and magnetic property enhancement of advanced materials. Her honors include recognition through high-quality publications and conference presentations that significantly contribute to Physics and Astronomy. With her strong research skills, including experimental synthesis, material characterization, and applied nanoscience, Dr. Gadwala continues to advance Physics and Astronomy by addressing emerging challenges in spintronic devices and sensor technology. In conclusion, her dedication, innovative contributions, and professional achievements highlight her as a dynamic scholar shaping future directions in Physics and Astronomy. 10 Citations, 5 Documents, 1 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Boddolla, S., Gantepogu, C. S., Gadwala, N., Shetty, P. B., Bantikatla, H., & Yadav, S. N. S. (2025, July). Enhancing the magnetic properties of CoFe₂O₄ ceramics through neodymium doping. Next Materials, 100802.

2. Gadwala, N. (2025, February). Effect of trivalent Ho³⁺ ion doping on structural, magnetic, optical, and electrical properties of BiFeO₃ nanoparticles. Physica Status Solidi (b), 202400304.

Wang Yuqi | Engineering | Best Researcher Award

Mr. Wang Yuqi | Engineering | Best Researcher Award

postgraduate | Harbin Engineering University | China

Mr. Wang Yuqi is an accomplished researcher from Harbin Engineering University with a strong foundation in Mechanical and Electronic Engineering and Marine Robot systems, excelling in the field of engineering through his work on advanced robotics and intelligent control systems. His academic journey includes a master’s focus on marine robotics and an undergraduate specialization in mechanical and electronic engineering, supported by numerous honors and scholarships that highlight his academic excellence. His professional experience spans leading roles in engineering projects, including the design and optimization of deep-sea exploration ROV control systems, intelligent unmanned hovercraft, and sea cucumber robot technologies, where he applied cutting-edge engineering methodologies such as FreeRTOS-based scheduling, STM32 circuit design, FPGA communication protocols, and ROS data processing. He has further contributed as an intern at the National Deep Sea Base Management Center and Midea Group, where he advanced engineering solutions for marine exploration and motor control systems. His research interests lie in engineering design for underwater robotics, intelligent control, sensor integration, and embedded systems, which have led to recognition in national and international competitions. Mr. Wang Yuqi’s engineering expertise is complemented by strong skills in programming (C/C++, MATLAB), simulation and design tools, communication protocols, and hardware debugging, making him a versatile and innovative researcher. His achievements in engineering, both academically and professionally, have earned him awards, leadership roles, and recognition for his contributions to innovation in robotics and intelligent systems, reflecting a promising career in engineering research and application. 13 Citations, 6 Documents, 3 h-index

Profiles: Scopus | ORCID

Featured Publications

1. Zhang, H., Sun, Y., Zhao, Y., Xie, Y., Li, X., Wang, Y., & Zhao, C. (2024). Corrosion and carburization of Ni<sub>3</sub>Al-based superalloys in high-temperature carbon dioxide. Materials and Corrosion.

2. Huang, Y., Wang, Y., Yu, S., Zhang, H., & Zhao, C. (2024). Hot deformation behavior and dynamic recrystallization mechanisms of a Mn-Cu damping alloy. Materials Today Communications.

3. Huang, Y., Wang, Y., Yu, S., Zhang, H., & Zhao, C. (2024). Hot deformation behavior and dynamic recrystallization mechanisms of a Mn-Cu damping alloy. SSRN.

4. Li, X., Yu, S., Huang, Y., Wang, Y., Zhang, H., & Zhao, C. (2024). Impact of secondary γ’ precipitate on the high-temperature creep properties of DD6 alloy. Metals and Materials International.

5. Huang, Y., Wang, Y., Yu, S., Zhao, C., Zhao, Y., & Zhang, H. (2024). Influence of aging heat treatment on microstructure and mechanical properties of a novel polycrystalline Ni3Al-based intermetallic alloy. SSRN.

Yuanfang Han | Experimental Methods | Best Researcher Award

Mr. Yuanfang Han | Experimental Methods | Best Researcher Award

Yuanfang Han | Beijing University of Posts and Telecommunications | China

Mr. Yuanfang Han is an Engineering researcher specializing in network performance analysis with strong expertise in Experimental Methods that drive innovation in server diagnosis and optimization, where his academic foundation at the School of Information and Communication Engineering, Beijing University of Posts and Telecommunications has equipped him with advanced skills in passive traffic measurement, anomaly detection, and performance management metrics. His professional experience highlights Experimental Methods applied to large-scale systems, particularly through the development of the Cross-Environment Server Diagnosis with Fusion (CSDF) framework in collaboration with China Tower Corporation Limited, achieving significant efficiency improvements. His research interest is anchored in Experimental Methods for traffic-based anomaly detection, host–network correlation, and machine-learning-driven optimization of communication networks, producing impactful contributions such as SCI-indexed publications in Electronics. Recognition through awards and industry collaborations reflects his excellence in applying Experimental Methods to both academic and industrial challenges. His research skills encompass cross-environment request alignment, packet capture analysis, and random-forest-based attribution models, each grounded in Experimental Methods that ensure accurate performance diagnostics. With membership in IEEE and contributions that reduce system response time in production environments, he demonstrates how Experimental Methods extend beyond theory into real-world deployment. In conclusion, Mr. Yuanfang Han exemplifies Engineering leadership through Experimental Methods that integrate machine learning, system diagnosis, and network optimization, marking him as a promising researcher with impactful contributions to future technological advancements.

Profile: ORCID

Featured Publication

1. Han, Y., Zhang, Z., Li, X., Zhao, J., Gu, R., & Wang, M. (2025). A non-intrusive approach to cross-environment server bottleneck diagnosis via packet-captured application latency and APM metrics. Electronics, 14(19), 3824.

Dr. Abouzar Bahari | Nuclear Physics | Best Researcher Award

Dr. Abouzar Bahari | Nuclear Physics | Best Researcher Award

CEO | Bahari Research and Development | Oman

Dr. Abouzar Bahari is a distinguished scholar and researcher whose academic and professional journey reflects a deep commitment to Nuclear Physics, with a Ph.D. in Nuclear Physics from Payame-Noor University, alongside advanced studies in Genetics, Petroleum Engineering, and Mining Engineering, enabling him to bridge multidisciplinary fields through innovative research. His career includes leadership as CEO and Founder of Bahari Research and Development in Muscat, Oman, invited lectureships at Ferdowsi University of Mashhad, and extensive engineering experience in oil and gas production, all while advancing Nuclear Physics research through Monte Carlo simulations, particle radiation modeling, relativity, zero-point field analysis, and electromagnetic field applications in health sciences. His Nuclear Physics dissertation on predicting rock and fault failure has been recognized with prestigious awards, including a Best Researcher Award, and his consistent ranking among top graduates further validates his expertise. As a prolific contributor to scientific journals, reviewer, and editorial board member, Dr. Bahari has authored impactful works on earthquake precursors, neutron interactions, and Nuclear Physics-based simulations. His research interests span physics, cancer therapy with ultra-low frequency fields, and interdisciplinary applications of Nuclear Physics in geology, health, and energy systems. With advanced computational and simulation skills in MCNPX, MATLAB, Python, and visualization software, he combines technical mastery with scientific creativity. Overall, Dr. Bahari exemplifies how Nuclear Physics can integrate with diverse domains to generate solutions with global impact, and his career stands as a model of excellence in research, innovation, and education.

Profiles: Google Scholar | ORCID

Featured Publications

1. Bahari, A., & Seyed, A. B. (2007, April). Trust-region approach to find constants of Bourgoyne and Young penetration rate model in Khangiran Iranian gas field (SPE-107520-MS). SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina. Society of Petroleum Engineers.

2. Bahari, A., & Baradaran Seyed, A. (2009). Drilling cost optimization in a hydrocarbon field by combination of comparative and mathematical methods. Petroleum Science, 6(4), 451–463.

3. Moradi, H., Bahari, M. H., Sistani, M. B. N., & Bahari, A. (2010). Drilling rate prediction using an innovative soft computing approach. Scientific Research and Essays, 5(13), 1583–1588.

4. Bahari, M. H., Bahari, A., Moharrami, F. N., & Sistani, M. B. (2008). Determining Bourgoyne and Young model coefficients using genetic algorithm to predict drilling rate. Journal of Applied Sciences, 8(17), 3050–3054.

5. Hassan, B. M., Aboozar, B., & Hamidreza, M. (2011). Intelligent drilling rate predictor. International Journal of Innovative Computing, Information and Control, 7(4), 1425–1436.

Prof. Levent Trabzon | Engineering | Best Researcher Award

Prof. Levent Trabzon | Engineering | Best Researcher Award

Faculty Member | Istanbul Technical University | Turkey

Prof. Levent Trabzon is a distinguished academic in Engineering, serving as Professor at Istanbul Technical University and Director of the MEMS Research Center. With a Ph.D. in Engineering Science from Penn State University, along with advanced degrees in Material Science & Engineering, he has built a career at the forefront of mechanical and materials Engineering. His professional journey spans leadership roles such as founding director of nanotechnology centers, advisory positions in international Engineering institutions, and consultancy in emergency management. His research covers microfluidics, MEMS, NEMS, nanomaterials, biomaterials, thin film deposition, and innovation in Engineering systems, with active involvement in international collaborations and numerous funded projects. Recognized with multiple Performance Awards, Article Performance Awards, and international innovation prizes, his work has significantly advanced Engineering applications in energy, environment, healthcare, and manufacturing. His Engineering skills include nanotechnology design, microsystem modeling, thin film fabrication, advanced materials processing, and innovation management. A prolific researcher with over a hundred documents in leading Engineering journals and conferences, his impact is reflected in patents, invited talks, and global recognition. Prof. Levent Trabzon continues to push the boundaries of Engineering through teaching, mentoring, and pioneering projects that integrate cutting-edge technologies for societal benefit. 1,422 Citations by 1,301 documents, 100 Documents, 19 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. Benzait, Z., & Trabzon, L. (2018). A review of recent research on materials used in polymer–matrix composites for body armor application. Journal of Composite Materials, 52(23), 3241–3263.

2. Saleem, H., Trabzon, L., Kılıç, A., & Zaidi, S. (2020). Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination, 478, 114178.

3. Ramazanoglu, M., Lutz, R., Rusche, P., Trabzon, L., Kose, G. T., Prechtl, C., & other authors. (2013). Bone response to biomimetic implants delivering BMP-2 and VEGF: An immunohistochemical study. Journal of Cranio-Maxillofacial Surgery, 41(8), 826–835.

4. Wang, J., Yang, Y., Wang, Y., Dong, S., Cheng, L., Li, Y., Wang, Z., Trabzon, L., & other authors. (2022). Working aqueous Zn metal batteries at 100 °C. ACS Nano, 16(10), 15770–15778.

5. Benzait, Z., Chen, P., & Trabzon, L. (2021). Enhanced synthesis method of graphene oxide. Nanoscale Advances, 3(1), 223–230.