Assoc. Prof. Dr. Sadia Ameen | Materials Science | Outstanding Scientist Award

Assoc. Prof. Dr. Sadia Ameen | Materials Science | Outstanding Scientist Award

Associate Professor | Jeonbuk National University | South Korea

Assoc. Prof. Dr. Sadia Ameen is a distinguished academic in Materials Science with extensive contributions to nanomaterials, thin films, nanocomposites, optoelectronic devices, catalysts, biosensors, supercapacitors, and energy storage systems. With strong educational foundations culminating in a doctorate in Materials Science, she has advanced knowledge through innovative synthesis and characterization techniques such as PECVD, sol-gel, hydrothermal, and solid-state methods. Her professional career includes roles as Associate Professor at Jeonbuk National University, Republic of Korea, and Adjunct Visiting Associate Professor at La Trobe University, Australia, demonstrating her global engagement in Materials Science. Her research interests span organic semiconductors, perovskite solar cells, nanostructured materials for energy and environmental applications, and device fabrication, with over 160 SCI/SCIE publications as author and corresponding author. She has received multiple recognitions and serves as a reviewer and editorial board member for international journals in Materials Science. Her research skills include nanomaterial synthesis, electrochemical analysis, device fabrication, and advanced characterization. Through leadership in collaborative projects, she has strengthened international scientific networks. In conclusion, Assoc. Prof. Dr. Sadia Ameen’s career embodies excellence in Materials Science, integrating innovative research, international collaboration, and impactful publications, highlighting her as a globally recognized expert advancing sustainable technologies and applications through Materials Science. Her Google Scholar citations 6759, h-index 42, i10-index 121, showcasing measurable research impact.

Profiles: Google Scholar | ORCID

Featured Publications

1. Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., & Singh, G. (2015). Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632, 321–325.

2. Ameen, S., Rub, M. A., Kosa, S. A., Alamry, K. A., Akhtar, M. S., Shin, H. S., Seo, H. K., … (2016). Perovskite solar cells: Influence of hole transporting materials on power conversion efficiency. ChemSusChem, 9(1), 10–27.

3. Malik, S., Singh, J., Goyat, R., Saharan, Y., Chaudhry, V., Umar, A., Ibrahim, A. A., … (2023). Nanomaterials-based biosensor and their applications: A review. Heliyon, 9(9), e19934.

4. Ameen, S., Akhtar, M. S., Seo, H. K., Kim, Y. S., & Shin, H. S. (2012). Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells. Chemical Engineering Journal, 187, 351–356.

5. Ameen, S., Seo, H. K., Akhtar, M. S., & Shin, H. S. (2012). Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye. Chemical Engineering Journal, 210, 220–228.

Ran Wang | Materials Science | Women Researcher Award

Ms. Ran Wang | Materials Science | Women Researcher Award

Student at Beijing Institute of Technology, China

Wang Ran is a dedicated master’s student in Materials Science and Engineering at Beijing Institute of Technology. She completed her undergraduate studies at Shandong University. With a keen interest in absorbing materials, she is committed to advancing research in this field. Though at an early stage in her academic journey, she is eager to contribute to scientific advancements. Wang Ran aspires to explore innovative materials with potential applications in energy absorption and electromagnetic shielding. Her passion for scientific discovery drives her ambition to make significant contributions to materials engineering. She is applying for the Women Research Award or Young Scientist Award. 🌟

Professional Profile 

Education & Experience 📚🔍

  • 🎓 Master’s Degree (Ongoing) – Beijing Institute of Technology, Materials Science and Engineering
  • 🎓 Bachelor’s Degree – Shandong University, Materials Science and Engineering

Professional Development 📖🔬

Wang Ran is in the early stages of her academic career, focusing on developing expertise in absorbing materials. She actively engages in coursework, laboratory experiments, and independent research projects to build a strong foundation in material science. Passionate about innovation, she continuously explores the latest advancements in materials engineering. Though she has not yet published any journals or patents, she is eager to collaborate with experts in her field. Her long-term goal is to contribute groundbreaking research that enhances the performance of absorbing materials in practical applications such as stealth technology and electromagnetic interference shielding. 🚀

Research Focus🏗️🔬

Wang Ran’s research interests lie in the field of absorbing materials, a crucial area in materials science that plays a significant role in energy dissipation, stealth technology, and electromagnetic shielding. She is particularly interested in developing new materials that can efficiently absorb electromagnetic waves and reduce interference in electronic devices. By studying the structural and compositional properties of these materials, she aims to optimize their absorption efficiency and enhance their performance in real-world applications. Her research has potential implications in defense, aerospace, and communication industries, where advanced absorbing materials are essential for improving stealth and signal integrity. 📡🛡️

Awards & Honors 🏆🎖️

  • 🌟 Nominee – Women Research Award (2025)
  • 🌟 Nominee – Young Scientist Award (2025)
  • 🎓 Bachelor’s Degree Completion – Shandong University
  • 📖 Master’s Degree Pursuit – Beijing Institute of Technology

Publication Top Notes

  • “Resonantly pumped acousto-optic Q-switched Er:YAG lasers at 1617 and 1645 nm”

    • Authors: R. Wang, Q. Ye, C. Gao
    • Journal: Applied Optics, 2014
    • Citations: 5
    • Summary:
      • Discusses the development of acousto-optic Q-switched Er:YAG lasers emitting at 1617 nm and 1645 nm.
      • The lasers are resonantly pumped, enhancing efficiency.
      • These wavelengths are valuable for medical, LIDAR, and optical communication applications.
  • “Single-frequency operation of a resonantly pumped 1.645μm Er:YAG Q-switched laser”

    • Authors: R. Wang, Q. Ye, Y. Zheng, M. Gao, C. Gao
    • Type: Conference Paper
    • Citations: 13
    • Summary:
      • Focuses on achieving single-frequency operation of an Er:YAG laser at 1645 nm.
      • Uses resonant pumping and a Q-switching technique for better performance.
      • Suitable for high-precision applications such as spectroscopy and atmospheric sensing.

Conclusion

While Wang Ran shows potential in her research field, she currently lacks the extensive academic contributions and professional engagement necessary to compete for a “Best Researcher” or “Women Researcher” award. She would be a more suitable candidate for a “Young Scientist Award” in the future, provided she enhances her publication record, citations, collaborations, and industry engagement.