73 / 100 SEO Score

Dr. Khushboo Singh | Engineering | Best Researcher Award

Research Fellow at University of Technology Sydney, Australia

Dr. Khushboo Singh 🎓🔬 is a Postdoctoral Research Fellow at the University of Technology Sydney 🇦🇺. With 10+ years of experience in academia, defence, and industry, she specializes in high-power millimetre-wave antennas 🚀📡. Her collaboration with the Defence Science and Technology Group (DSTG) has earned her national recognition, including the prestigious Eureka Prize 🏆. Passionate about cutting-edge tech, she also works on space, maritime, and mobile satellite communication systems 🌌🌊📶. A dedicated mentor and leader, Dr. Singh actively supports women in STEM 💪👩‍🔬 while advancing Australia’s research landscape through innovation and excellence 🌟.

Professional Profile:

Scopus

Google Scholar

🔹 Education & Experience 

🎓 Education:

  • 📍 Ph.D. in Electrical & Electronics Engineering | Macquarie University, Australia | 2021

  • 📍 M.Sc. (Research) in Electronics & Communication | LNMIIT, India | 2014 | CPI: 9/10

  • 📍 B.Tech in Electronics & Communication | SHIATS, India | 2012 | CPI: 9.7/10

💼 Experience:

  • 👩‍🔬 Postdoctoral Research Fellow | UTS | Nov 2023 – Present

  • 👩‍🏫 Research Associate | UTS | Nov 2020 – Oct 2023

  • 🌏 Visiting Researcher | IIT-Kanpur | Mar – May 2023

  • 🧠 Technical Researcher | Electrotechnik Pty Ltd. | Nov 2019 – Mar 2020

  • 🎓 Casual Tutor | Macquarie University | 2017, 2024

  • 👩‍🏫 Guest Lecturer | Swami Rama Himalayan University | 2015 – 2016

  • 👩‍🏫 Assistant Professor | Pratap Institute, India | 2014 – 2015

🔹 Professional Development 

Dr. Singh is a passionate leader in research and professional mentoring 🌟. She serves as a mentor in multiple STEM programs 👩‍🔬🤝 including Women in Engineering and WiSR at UTS, encouraging female participation in science and technology 👩‍💻👩‍🔬. As award chair for the 2025 Australian Microwave Symposium 🏅 and a past session organizer for major IEEE and EuCAP conferences, she actively contributes to the global antenna research community 🌐📡. She also provides project supervision, peer reviews, and guidance to students and engineers, playing a key role in shaping future tech talent and research direction 🚀🧑‍🔬.

🔹 Research Focus 

Dr. Singh’s research centers on high-power, metasurface-based millimetre-wave antennas 📡⚡ with beam-steering and in-antenna power-combining features. Her work has major applications in defence, space, maritime, and satellite communications 🛰️🚢. She collaborates with Australia’s Defence Science and Technology Group (DSTG) to design antennas suited for compact, power-constrained environments 🛠️. Her contributions enable better surveillance, radar, and communication systems in mission-critical scenarios 🎯. She is also exploring inter-satellite link antennas and intelligent surfaces for next-gen wireless communication 🌐📶, cementing her role at the intersection of advanced electromagnetics, microwave engineering, and national security defense systems 🛡️.

🔹 Awards & Honors 

🏆 Awards & Honors:

  • 🥇 Winner – 2024 ICEAA – IEEE APWC Best Paper Award

  • 🏅 Winner – 2023 Eureka Prize for Outstanding Science for Safeguarding Australia

  • 👏 Finalist – 2025 AUS SPACE Academic Research Team of the Year

  • 👩‍🚀 Finalist – 2024 ADM Women in Defence (R&D Category)

  • 🧪 Finalist – 2022 UTS Vice-Chancellor’s Award for Research Excellence

  • ⭐ Top 200 Reviewer – IEEE Transactions on Antennas & Propagation (2023)

  • 🥇 Winner – 2019 IEEE NSW Outstanding Student Volunteer

  • 💰 Winner – CHOOSEMATHS Grant by AMSI & BHP Foundation (2017)

  • 🎓 Scholarships – iRTP (2017–2020), LNMIIT Research Stipend (2012–2014)

Publication Top Notes

📘 1. Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems with Phase-Gradient Metasurfaces

  • Authors: K. Singh, M.U. Afzal, M. Kovaleva, K.P. Esselle

  • Journal: IEEE Transactions on Antennas and Propagation

  • Volume/Issue: 68(3), Pages 1389–1401

  • Year: 2019

  • Citations: 86

  • DOI: 10.1109/TAP.2019.2940403

  • Highlights:

    • Introduced techniques to control dominant grating lobes in 2D beam-steering.

    • Employed phase-gradient metasurfaces to steer beams without complex feed networks.

    • Achieved low sidelobe levels and improved directivity.

    • Combined analytical modeling with full-wave electromagnetic simulations.

📗 2. Designing Efficient Phase-Gradient Metasurfaces for Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 9, Pages 109080–109093

  • Year: 2021

  • Citations: 34

  • DOI: 10.1109/ACCESS.2021.3102204

  • Highlights:

    • Focused on near-field applications such as wireless power transfer.

    • Proposed a method to optimize phase response for compact metasurfaces.

    • Improved phase accuracy and minimized aperture size.

    • Demonstrated via simulations and measured prototypes.

📙 3. State-of-the-Art Passive Beam-Steering Antenna Technologies: Challenges and Capabilities

  • Authors: F. Ahmed, K. Singh, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 11, Pages 69101–69116

  • Year: 2023

  • Citations: 28

  • DOI: 10.1109/ACCESS.2023.3285260

  • Highlights:

    • Comprehensive review of passive beam-steering technologies.

    • Covers reconfigurable metasurfaces, mechanical rotation, and tunable materials.

    • Discusses energy efficiency, low-cost manufacturing, and practical limitations.

    • Key insight for researchers targeting 6G, IoT, and wearable tech.

📕 4. Evaluation Planning for Artificial Intelligence-Based Industry 6.0 Metaverse Integration

  • Author: K. Singh

  • Conference: Intelligent Human Systems Integration (IHSI 2023)

  • Year: 2023

  • Citations: 27

  • DOI: 10.1007/978-3-031-28032-0_40

  • Highlights:

    • Discusses AI-driven frameworks for integrating Industry 6.0 with the metaverse.

    • Addresses human-system interaction, digital twins, and smart automation.

    • Proposes an evaluation roadmap for real-time metaverse-industrial synergy.

    • Useful for future cyber-physical systems and smart manufacturing.

📒 5. Accurate Optimization Technique for Phase-Gradient Metasurfaces Used in Compact Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: Scientific Reports (Nature Publishing Group)

  • Volume: 12, Article 4118

  • Year: 2022

  • Citations: 20

  • DOI: 10.1038/s41598-022-08057-8

  • Highlights:

    • Developed a precise numerical optimization technique for metasurface design.

    • Reduced phase errors, enabling high-accuracy near-field beam control.

    • Achieved better performance in compact and portable systems.

    • Practical for radar, medical imaging, and wireless power applications.

Conclusion

Dr. Khushboo Singh exemplifies the qualities of an outstanding researcher — innovative, impactful, and committed to scientific excellence. Her exceptional track record in antenna technology for defense and space applications, combined with her leadership in mentoring and research supervision, makes her a standout candidate for the Best Researcher Award. Her research is not only scientifically robust but also socially and nationally significant, particularly in safeguarding technological frontiers of Australia.

She is a role model for aspiring researchers, especially women in STEM, and a worthy recipient of such an honor.

Khushboo Singh | Engineering | Best Researcher Award

You May Also Like