Lijun Chen | Engineering | Best Researcher Award

Prof. Lijun Chen | Engineering | Best Researcher Award

Professor at Northeast Electric Power University, China

Professor Lijun Chen is a seasoned academic and applied researcher at Northeast Electric Power University, bringing over three decades of expertise in automation, thermophysical measurement, and power plant monitoring systems. ๐Ÿš€ With early technical training at Fuji Electric (Japan) and a strong industrial foundation at Dalian Huaying High-Tech Co., he seamlessly bridges theory with real-world application. His scholarly portfolio boasts 50+ journal publications ๐Ÿ“š (with 20+ indexed by EI and others in SCI), and six national invention patents that reflect his innovation-driven mindset. โš™๏ธ He has led multiple national and provincial projects, combining academic research with industrial consulting to optimize thermal power systems. A Senior Member of the China Metrology Society, his dedication is evident through a career filled with impactful collaborations, cutting-edge research, and enduring contributions to the energy sector. ๐Ÿ”ง His work continues to empower sustainable and efficient energy technologies across China and beyond. ๐ŸŒ

Professional Profileย 

Scopus

๐ŸŽ“ Education

Professor Lijun Chenโ€™s educational journey is deeply rooted in engineering excellence. ๐ŸŒฑ He enhanced his technical knowledge through automation testing training at Fuji Electric, Japan (1991โ€“1992), where he gained exposure to international standards and modern industrial practices. This early international training laid the groundwork for a future in advanced automation and instrumentation. He continued sharpening his skills with hands-on industry experience before entering academia. ๐Ÿ“ His educational pursuits were not just theoretical but focused on practical solutions for real-world problems in power systems. His academic foundation, supplemented by immersive industrial exposure, uniquely positions him as a knowledge leader in thermophysical measurement and energy systems. ๐Ÿ”‹ The fusion of global learning and domestic execution in his educational journey symbolizes his balanced and forward-thinking approach to engineering education and research. ๐Ÿ“Š

๐Ÿ‘จโ€๐Ÿ’ผ Professional Experience

Professor Chenโ€™s professional voyage is an exemplar of bridging industry with academia. ๐Ÿญ From 1995 to 1997, he worked at Dalian Huaying High-Tech Co., developing automation solutions for complex power systems. Following this, from 1997 to 2001, he continued innovating at the Institute of Electronic Engineering Technology, sharpening his expertise in electronic control. Since 2001, he has been a cornerstone of the School of Automation Engineering at Northeast Electric Power University. ๐Ÿง‘โ€๐Ÿซ There, he has led or collaborated on numerous high-impact projects, integrating research with engineering applications. His leadership in thermal power plant control systems has shaped provincial-level R&D initiatives and academicโ€“industry partnerships. ๐Ÿง  His work with national and horizontal industry projects exemplifies how academic insight can directly solve operational challenges in the energy sector. ๐Ÿ”Œ

๐Ÿ”ฌ Research Interest

Lijun Chenโ€™s research is centered on cutting-edge thermal measurement and automation in power engineering. ๐ŸŒก๏ธ His core interests span thermophysical parameter estimation, combustion optimization, and defect detection in high-frequency electromagnetic equipment. ๐Ÿ”Ž These focus areas have significant industrial value, particularly in enhancing the efficiency, safety, and reliability of thermal power plants. His work addresses critical challenges in energy management and environmental control, making his innovations especially relevant in the current era of carbon reduction and sustainable engineering. ๐ŸŒ Professor Chen’s ability to combine hardware innovation with control algorithms demonstrates his multi-disciplinary reach across automation, electronics, and thermodynamics. His projects often involve both modeling and experimental validation, ensuring practical applicability. ๐Ÿ“Š His collaborations with institutes and enterprises are further proof of his commitment to solving industry-grade problems with scientifically sound solutions. โš›๏ธ

๐Ÿ… Award and Honor

Throughout his illustrious career, Professor Chen has been recognized with multiple provincial science and technology awards, a testament to the real-world impact of his work. ๐Ÿ† His patentsโ€”six granted at the national levelโ€”underscore his creative contributions to the field of power system automation and thermal engineering. ๐Ÿ“œ His consistent participation in government-funded and industry-sponsored projects not only highlights his technical capability but also his leadership in driving research innovation. He is a Senior Member of the China Metrology Society and plays a notable role in the Jilin Province Electrical Engineering Society, reflecting his influence in professional circles. ๐Ÿค His efforts have significantly elevated the performance of thermal power systems, earning him peer recognition and respect. His honors are not just awardsโ€”they are reflections of decades of dedicated research, innovation, and service to the field. ๐Ÿ”ง๐Ÿ’ก

๐Ÿ“š Publications Top Noteย 

1. Title: The Feasibility Study on Pulverized Coal Mass Concentration Measurement in Primary Air of Plant Using Fin Resonant Cavity Sensor
Authors: Hao Xu, Yiguang Yang, Lijun Chen, Hongbin Yu, Junwei Cao
Year: 2024
Type: Conference Paper
Source: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Citations: 0 (as of the latest data)
Summary:
This study explores the application of a fin resonant cavity sensor to measure the mass concentration of pulverized coal in the primary air system of power plants. The authors designed and experimentally validated a resonant cavity-based sensor for real-time and high-flow environment monitoring. Results indicate the method’s strong potential for improving combustion efficiency and operational safety in thermal power systems.


2. Title: Research on Finite-Time Consensus of Multi-Agent Systems
Authors: Lijun Chen, Yu Zhang, Yuping Li, Linlin Xia
Year: 2019
Type: Journal Article
Source: Journal of Information Processing Systems (JIPS)
DOI: 10.3745/JIPS.01.0039
Citations: 1 (confirmed from source journal; citation count may vary on other platforms)
Summary:
This paper proposes a novel consensus protocol that enables finite-time convergence in second-order multi-agent systems. By incorporating the gradient of a global cost function into the standard consensus model, the authors enhance coordination speed and robustness among agents. Theoretical analysis using Lyapunov functions, homogeneity theory, and graph theory supports the methodโ€™s effectiveness. Simulations demonstrate superior performance in leaderโ€“follower scenarios.

โœ… Conclusionย 

In conclusion, Professor Lijun Chen exemplifies the model of a research-driven innovator and dedicated academic. ๐Ÿ“˜ With a career spanning research, teaching, consultancy, and invention, he has contributed immensely to the advancement of thermal power automation and measurement systems. His ability to transform theoretical concepts into tangible industrial solutions highlights his value as both a scholar and engineer. ๐Ÿ”ฌ His multi-patented technologies and SCI-indexed publications reflect a commitment to quality, while his work with industry partners showcases practical relevance. With unwavering focus and passion for thermodynamics, automation, and sustainability, Professor Chen continues to shape the future of smart thermal energy systems in China and beyond. ๐ŸŒฑ His legacy is one of bridging knowledge with innovation, inspiring a new generation of researchers and engineers. ๐ŸŒŸ

Sล‚awomir Michalak | Engineering | Industry Impact Award

Assist. Prof. Dr. Sล‚awomir Michalak | Engineering | Industry Impact Award

Avionics Division Manager at Air Force Institute of Technology, Poland

Prof. Sล‚awomir Michalak, Ph.D., D.Sc. Eng. โœˆ๏ธ, is a distinguished aviation expert whose work bridges academia, defense, and engineering innovation. With decades of experience in avionics systems, aircraft diagnostics, and battlefield electronic warfare systems ๐Ÿ› ๏ธ๐Ÿ“ก, he has led the Avionics Department at the Air Force Institute of Technology since 2001. His pioneering efforts span system integration, reliability assessment, and phonoscopic analysis, influencing modern aviation practices. Michalak is a prolific contributor ๐Ÿ“š with numerous publications and nine recognized implementations. As a mentor and reviewer, he has significantly shaped doctoral and post-doctoral research. He has also educated future aviation professionals ๐Ÿ‘จโ€๐Ÿซ at institutions like the Warsaw University of Technology and the SIMP NOT Technical School. Actively involved in national defense research and scientific committees, his legacy resonates across Polish military aviation and beyond ๐ŸŒ. His commitment to innovation and education makes him a keystone figure in aviation sciences and applied technologies.

Professional Profileย 

Orcid

Scopus

๐ŸŽ“ Educationย 

Dr. Sล‚awomir Michalakโ€™s academic journey ๐Ÿš€ is deeply rooted in technical aviation sciences, marked by a robust specialization in avionics and aircraft navigation systems. He earned his doctorate in engineering and later achieved the prestigious Doctor of Science (D.Sc.) degree in technical sciences in 2016 ๐ŸŽ“, with a concentration on machine construction and operational disciplines. His educational trajectory demonstrates a relentless pursuit of advanced knowledge in complex aircraft systems, enhancing Poland’s aerospace education infrastructure. Moreover, his authorial role in crafting and teaching curriculaโ€”especially the subject “Aviation Equipment” approved by Warsawโ€™s Education Boardโ€”reflects a deep commitment to pedagogy. His teaching efforts spanned nearly three decades and included lectures at Warsaw University of Technologyโ€™s Faculty of Transport, focusing on Air Navigation ๐Ÿงญ. His foundation in education has not only equipped him with specialized skills but has also enabled him to disseminate that knowledge to future leaders of aviation systems engineering.

๐Ÿ’ผ Professional Experienceย 

With an illustrious career spanning over three decades, Prof. Michalak has held pivotal roles that define Polandโ€™s aviation research and development landscape โœˆ๏ธ. Since 2001, he has been the head of the Avionics Department at the Air Force Institute of Technology, where he currently serves as a professor ๐Ÿ‘จโ€๐Ÿ”ฌ. His career is marked by excellence in integrating avionics systems, reliability diagnostics, and designing solutions for modern combat operations, including electronic countermeasures ๐Ÿ›ก๏ธ. He has played a key advisory role in national aviation safety as a long-standing member of the Aircraft Accident Investigation Board, later incorporated into the State Aviation Accident Investigation Board ๐Ÿ•ต๏ธ. He also lends expertise to the Polish Academy of Sciences’ Transport Committee. Parallelly, he has served as a reviewer and board member for multiple doctoral/post-doctoral theses, as well as contributing to national defense and R&D projects funded by premier agencies like the National Center for Research and Development ๐Ÿ’ก.

๐Ÿ”ฌ Research Interestsย 

Prof. Michalakโ€™s research interests are deeply embedded in the critical functionalities of advanced aircraft systems, with a core emphasis on avionics integration and optimization ๐Ÿš. His scholarly pursuits center on diagnostics, system reliability, and onboard information processing, including phonoscopic and parametric analysis of flight data recorders ๐Ÿ“ˆ๐Ÿ”Š. He investigates navigation system integrity, real-time data interpretation, and complex multi-sensor integration essential for military reconnaissance and electronic warfare systems. His innovations directly impact aircraft survivability and mission effectiveness in modern combat environments โš™๏ธ. His work also extends to analyzing flight incident data, enhancing aviation safety and post-mission assessments. Furthermore, his involvement in the Electromobility and Autonomous Transport Section reveals his forward-looking vision in adapting aviation technologies to land-based and autonomous platforms ๐Ÿš—๐Ÿ“ก. Through interdisciplinary collaborations and defense-funded projects, his research acts as a crucial bridge between theoretical foundations and operational implementation across aviation and defense sectors.

๐Ÿ… Awards and Honorsย 

Though specific award titles are not explicitly listed, Prof. Michalakโ€™s array of achievements reflects a highly decorated academic and technical career ๐Ÿ†. His recognition stems from the practical impact of nine notable implementation projects that brought real-world improvements in avionics system performance and safety โœจ. His invitations to serve on scientific committees, review doctoral works, and lecture at renowned institutions showcase the esteem he holds in academic and defense circles. His prolonged contribution to the Aircraft Accident Investigation Boardโ€”spanning eras of structural reorganizationโ€”further demonstrates his trusted leadership in critical national aviation oversight roles โœˆ๏ธ. Being part of elite organizations like the Transport Committee of the Polish Academy of Sciences and guiding R&D projects funded by the Ministry of Defense affirms his reputation as a thought leader ๐Ÿง . These honors, both formal and implied, are a testament to his sustained excellence and unwavering dedication to enhancing Poland’s aerospace defense and academic frontiers.

๐Ÿ“š Publications Top Noteย 

1. Power Quality in the Context of Aircraft Operational Safety
Authors: Tomasz Tokarski, Sล‚awomir Michalak, Barbara Kaczmarek, Mariusz Zieja, Tomasz Polus
Year: 2025 (Published April 10)
Journal: Energies
DOI: 10.3390/en18081945
Source: Crossref / MDPI
Summary:
This article investigates how power quality, particularly from Ground Power Units (GPUs), affects aircraft operational safety. It focuses on GPUs used by the Polish Armed Forces and highlights how aging equipment (some over 40 years old) leads to degraded performance in transient conditions, contributing to aircraft unserviceability. The paper proposes diagnostic methodologies in line with Polish military standards and emphasizes the need for modern monitoring systems to ensure power reliability.


2. Selected Problems of Determining Pilot Survival Time in Cold Water after the Aircraft Crash
Authors: Przemysล‚aw Stฤ™ลผalski, Sล‚awomir Michalak, Jerzy Borowski
Year: 2025 (Published January 17)
Journal: The Polish Journal of Aviation Medicine, Bioengineering and Psychology
DOI: 10.13174/pjambp.17.12.2024.04
Source: Crossref
Summary:
This research introduces a computational model to estimate pilot survival times in cold water following an aircraft crash. Using a thermodynamic body simulation with nonlinear heat transfer equations, the model accounts for factors such as temperature, body mass, clothing, and body position. The output helps in estimating hypothermia onset and unconsciousness time, aiding in rescue and survival strategy development.


3. The Effect of the Operation Time of the Aircraft Power System on Power Quality in Transient States
Authors: Not explicitly listed (likely includes Tomasz Tokarski and/or Sล‚awomir Michalak)
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4462
Source: Crossref
Summary:
The paper examines how long-term use and aging of aircraft power systems impact power quality, especially during transient events such as engine starts or system switches. It shows that older systems cause higher voltage deviations and fluctuations, compromising avionics performance and reliability. The findings support the importance of upgrading aging infrastructure to maintain operational integrity.


4. The Overview of Ecologic Military and Civilian Power Systems
Authors: Not specified
Year: 2024 (Published March 29)
Journal: Journal of Konbin
DOI: 10.5604/01.3001.0054.4461
Source: Crossref
Summary:
This review paper presents current trends in environmentally friendly power systems used in both civilian and military aviation. It discusses energy-efficient GPU technologies, emission reduction strategies, and renewable energy integration, underlining how ecological considerations are increasingly shaping power system design without sacrificing reliability and performance.


5. The Polish Helmet Mounted Display Systems for Military Helicopters
Author: Sล‚awomir Michalak
Year: 2016 (June)
Conference: 2016 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2016.7573240
Source: Crossref
Summary:
The paper discusses development, features, and performance evaluation of Polish helmet-mounted display systems for military helicopter pilots. It includes metrological approaches for assessing system reliability and precision in dynamic environments.


6. Metrology Tools of Computer Communication Control on Board Military Aircraft
Author: Sล‚awomir Michalak
Year: 2015
Journal: Przeglad Elektrotechniczny
DOI: 10.15199/48.2015.08.13
Source: Scopus / Crossref
Summary:
This article covers the development of metrology tools designed to monitor and control server communications onboard military helicopters. The study emphasizes reliability and diagnostic accuracy in harsh operational environments.


7. AFIT’s Laboratory Test Equipment to Optimise the Integrated Avionics Systems for Polish Military Aircrafts
Author: Sล‚awomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865904
Source: Crossref
Summary:
The study describes laboratory instrumentation developed by AFIT to test and optimize avionics systems in Polish military aircraft. It focuses on system integration, fault simulation, and metrological evaluation.


8. AFIT’s Laboratory Test Equipment to Optimise the Integrated Communication Systems for Polish Military Helicopters
Author: Sล‚awomir Michalak
Year: 2014 (May)
Conference: 2014 IEEE Metrology for Aerospace (MetroAeroSpace)
DOI: 10.1109/metroaerospace.2014.6865949
Source: Crossref
Summary:
This paper presents laboratory tools developed for assessing and refining communication systems in military helicopters. The research highlights signal integrity testing and communication protocol validation in simulated airborne conditions.


9. Computer Aided Diagnosis of Technical Condition of the SWLP-1 Helmet Mounted Flight Parameters Display System
Author: Sล‚awomir Michalak
Year: 2014
Journal: Journal of KONBiN
DOI: 10.2478/jok-2014-0025
Source: Crossref
Summary:
The paper introduces a computer-based diagnostic system for evaluating the SWLP-1 helmet display used in flight operations. It supports preventive maintenance through automated fault detection and performance assessment.


10. Naheล‚mowy System Celowniczy NSC-1 Orion dla Polskich ลšmigล‚owcรณw Wojskowych
Author: Sล‚awomir Michalak
Year: 2013
Journal: Scientific Letters of Rzeszow University of Technology – Mechanics
DOI: 10.7862/rm.2013.30
Source: Crossref
Summary:
This Polish-language article covers the NSC-1 Orion helmet-mounted sighting system, developed for Polish military helicopters. It details its targeting features, integration with aircraft systems, and effectiveness in operational scenarios.

๐Ÿ”š Conclusionย 

Prof. Sล‚awomir Michalak stands out as a trailblazer in aviation science, with his influence permeating research, defense, and education ๐ŸŒ. His technical command in avionics, experience in accident investigation, and commitment to academic excellence place him among Polandโ€™s most respected aerospace experts ๐Ÿš€. From developing navigation systems to interpreting flight data and advising national safety boards, his work has safeguarded lives and advanced technologies alike. His three-decade-long dedication to instructing young minds and contributing to global conferences reflects his dual passion for knowledge dissemination and innovation ๐Ÿ’ฌ๐Ÿ“˜. As a visionary integrating evolving avionics with real-time diagnostics and battlefield adaptability, he exemplifies the ideal intersection of theory and application ๐Ÿ›ซ. With continued contributions to autonomous systems and electromobility, Michalak remains not only a legacy figure in aerospace engineering but also a forward-thinker shaping its future. His professional journey is a compelling blueprint for excellence, innovation, and impactful service ๐Ÿ’ก๐ŸŽ–๏ธ.

Lei Liu | Engineering | Best Researcher Award

Prof. Lei Liu | Engineering | Best Researcher Award

Professor at Zhejiang University, China

Prof. Liu Lei is a Young Profenications, information theory, and signal processing. Liu received his Ph.D. in Communication and Information Systems from Xidian University and enriched his academic foundation as a visiting scholar at NTU Singapore. His postdoctoral and research appointments span SUTD, CityU Hong Kong, and JAIST Japan. Honored under ZJUโ€™s Hundred Talents Program, he actively leads in editorial and conference roles. With a track record of cutting-edge research, Prof. Liu has authored 39+ high-impact journal articles and continues to influence future innovations in modern channel coding and massive MIMO. ๐Ÿง ๐Ÿ“ก

Professional Profileย 

๐ŸŽ“ Education

Prof. Liu Lei began his academic journey in 2011 at Xidian University, earning his Ph.D. in Communication and Information System in March 2017. During his doctoral studies, he broadened his expertise with a prestigious exchange opportunity at Nanyang Technological University (NTU), Singapore (2014โ€“2016), where he engaged with globally renowned researchers in the field of Electrical and Electronic Engineering. This international exposure shaped his foundational understanding of statistical signal processing and message-passing algorithms. His academic pursuits combined rigorous theoretical knowledge with practical algorithmic development, laying the groundwork for his future innovations in wireless communication systems and information theory. ๐Ÿ“˜๐ŸŒ๐ŸŽ“

๐Ÿ’ผExperienceย 

Prof. Liu Lei has cultivated a rich academic career across leading global institutions. He began as a Postdoctoral Research Fellow at SUTD, Singapore (2016โ€“2017), followed by a Research Fellow role at City University of Hong Kong (2017โ€“2019). He then served as Assistant Professor at JAIST, Japan (2019โ€“2023), achieving top research rankings among faculty. Since 2023, he has been a Tenure-Track Young Professor and Doctoral Supervisor at Zhejiang University. His expertise spans message passing, compressed sensing, and channel coding. Prof. Liu has been active in IEEE conferences, serving in key editorial and chairing roles, and is a notable reviewer for top-tier journals. ๐ŸŒ๐Ÿ“š๐Ÿซ

๐Ÿ† Awards & Honors

Prof. Liu Lei has received several prestigious accolades for his research excellence. In 2023, he was honored with the Young Star Award and the Best Poster Award at the 30th Chinese Institute of Electronics Conference on Information Theory (CIEIT), recognizing his impactful contributions to information theory. His dedication to academic rigor earned him the Exemplary Reviewer Award from IEEE Transactions on Communications in 2020, an honor bestowed on less than 2% of reviewers. These distinctions underscore his leadership in developing cutting-edge algorithms and his commitment to advancing wireless communication systems. ๐Ÿฅ‡๐ŸŽ–๏ธ๐Ÿ…

๐Ÿ”ฌ Research Focusย 

Prof. Liuโ€™s research focuses on the development of high-performance algorithms and theoretical frameworks in wireless communications. His interests include Message Passing Theory, Statistical Signal Processing, Compressed Sensing, Modern Channel Coding, and Information Theory. He is especially noted for innovations in Approximate Message Passing (AMP) and Orthogonal AMP (OAMP) algorithms. His work aims to optimize capacity and performance in massive MIMO, NOMA, and RIS-aided systems. Prof. Liu’s vision integrates theoretical depth with engineering applications, contributing to next-generation communication systems with greater efficiency, robustness, and scalability. ๐Ÿ“ก๐Ÿ“Š๐Ÿ”

๐Ÿ› ๏ธ Skillsย 

Prof. Liu Lei has extensive expertise in ๐Ÿ“ถ wireless communication, particularly in emerging technologies such as massive MIMO, NOMA, mmWave, and Integrated Sensing and Communication (ISAC) systems. His work contributes to optimizing spectral efficiency and network reliability in next-generation wireless networks.

In the field of ๐Ÿ“ signal processing, he is highly skilled in compressed sensing and advanced channel estimation techniques, which enhance data recovery and transmission accuracy in complex environments.

His foundation in ๐Ÿ“Š information theory is robust, focusing on coding theory, achievable rates, and capacity optimization, all critical to efficient communication system design.

Prof. Liu is also a specialist in ๐Ÿงฎ message passing algorithms, including AMP, OAMP, GAMP, and GVAMP, which he applies to both theoretical models and practical systems.

He leverages ๐Ÿ”— machine learning tools such as neural networks and variational inference to improve signal decoding.

In addition, he is experienced in ๐Ÿ“š academic publishing and ๐Ÿง‘โ€๐Ÿซ teaching, mentoring students in both foundational and advanced courses.

๐Ÿ“š Publications Top Noteย 

  1. Iterative Channel Estimation Using LSE and Sparse Message Passing for MmWave MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen, S. Sun

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 161

    • ๐Ÿ“… Year: 2018

  2. Capacity-Achieving MIMO-NOMA: Iterative LMMSE Detection

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Chi, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Signal Processing

    • ๐Ÿ”ข Citations: 151

    • ๐Ÿ“… Year: 2019

  3. User Activity Detection and Channel Estimation for Grant-Free Random Access in LEO Satellite-Enabled IoT

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Z. Zhang, Y. Li, C. Huang, Q. Guo, L. Liu, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Internet of Things Journal

    • ๐Ÿ”ข Citations: 149

    • ๐Ÿ“… Year: 2020

  4. Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, C. Huang

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 140

    • ๐Ÿ“… Year: 2019

  5. Convergence Analysis and Assurance for Gaussian Message Passing in Massive MU-MIMO Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Yuen, Y.L. Guan, Y. Li, Y. Su

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 108

    • ๐Ÿ“… Year: 2016

  6. Practical MIMO-NOMA: Low Complexity and Capacity-Approaching Solution

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Chi, L. Liu, G. Song, C. Yuen, Y.L. Guan, Y. Li

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 84

    • ๐Ÿ“… Year: 2018

  7. Memory AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, S. Huang, B.M. Kurkoski

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 83

    • ๐Ÿ“… Year: 2022

  8. Orthogonal AMP for Massive Access in Channels with Spatial and Temporal Correlations

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: Y. Cheng, L. Liu, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Journal on Selected Areas in Communications

    • ๐Ÿ”ข Citations: 68

    • ๐Ÿ“… Year: 2021

  9. Capacity Optimality of AMP in Coded Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, C. Liang, J. Ma, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Information Theory

    • ๐Ÿ”ข Citations: 53

    • ๐Ÿ“… Year: 2021

  10. On Orthogonal AMP in Coded Linear Vector Systems

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: J. Ma, L. Liu, X. Yuan, L. Ping

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Wireless Communications

    • ๐Ÿ”ข Citations: 39

    • ๐Ÿ“… Year: 2019

  11. A New Insight into GAMP and AMP

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: L. Liu, Y. Li, C. Huang, C. Yuen, Y.L. Guan

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2019

  12. Over-the-Air Implementation of Uplink NOMA

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: S. Abeywickrama, L. Liu, Y.C. Yuhao, Chi

    • ๐Ÿ“ฐ Conference: IEEE Globecom

    • ๐Ÿ”ข Citations: 31

    • ๐Ÿ“… Year: 2018

  13. Asymptotically Optimal Estimation for Sparse Signal with Arbitrary Distributions

    • ๐Ÿง‘โ€๐Ÿคโ€๐Ÿง‘ Authors: C. Huang, L. Liu, C. Yuen

    • ๐Ÿ“ฐ Journal: IEEE Transactions on Vehicular Technology

    • ๐Ÿ”ข Citations: 28

    • ๐Ÿ“… Year: 2018

๐Ÿ Conclusion

Dr. Lei Liu exemplifies the qualities of a Best Researcher Award recipient: depth in theoretical research, breadth in global experience, and excellence in teaching and mentorship. His leadership roles, prolific output, and rising trajectory within academic and engineering communities make him a model scholar in the communications field. While areas like applied innovation and interdisciplinary expansion offer room for growth, his current achievements already place him at the forefront of his domain.

Jian-Bo Qu | Chemical Engineering | Best Researcher Award

Prof. Jian-Bo Qu | Chemical Engineering | Best Researcher Award

Dean at China University of Petroleum (East China), China

Prof. Jian-Bo Qu ๐ŸŽ“ is a distinguished researcher and full professor at the China University of Petroleum (East China) ๐Ÿซ. With a PhD from the Chinese Academy of Sciences (2009) ๐Ÿงช, his expertise spans bioseparation media, drug delivery systems, and biomaterials ๐Ÿงซ๐Ÿ’Š. He has published over 50 peer-reviewed papers ๐Ÿ“š, authored a book and book chapter ๐Ÿ“–, and holds 15 patents ๐Ÿ› ๏ธ. As an active member of the Chinese Chemical Society ๐Ÿงฌ and reviewer for top-tier journals ๐Ÿงพ, Prof. Qu continues to contribute cutting-edge innovations in analytical chemistry and biomedical engineering ๐Ÿงช๐Ÿง .

Professional Profile

Scopus

Suitability For Best Researcher Award -Prof. Jian-Bo Qu

Prof. Jian-Bo Qu is an established scholar in the field of chemical and biomedical engineering, with a strong interdisciplinary profile that bridges bioseparation, biomaterials, and drug delivery systems. His career demonstrates a blend of innovation, leadership, and international exposure. With over 50 publications, 15 patents, and leadership in 15+ funded projects (including national-level grants), he clearly meets and exceeds the standard criteria for a high-impact researcher.

Education & Experience

  • ๐ŸŽ“ PhD in Chemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (2009)

  • ๐ŸŒ Visiting Scholar, University of New South Wales, Australia (2015โ€“2016) under Prof. Martina Stenzel

  • ๐Ÿซ Full Professor, College of Chemistry and Chemical Engineering, China University of Petroleum (East China)

  • ๐Ÿงฌ Reviewer for journals like Macromolecules, Chemical Engineering Journal, Analytical Chemistry, etc.

  • ๐Ÿ… Project Leader of 15+ funded research projects including 3 by the National Natural Science Foundation of China

Professional Development

Prof. Qu’s professional development reflects a trajectory of excellence and continuous growth ๐Ÿ“Š. His postdoctoral training and international exposure in Australia ๐ŸŒ enriched his research perspectives in polymer science and biomedical engineering ๐Ÿงช. He actively participates in peer review for high-impact journals ๐Ÿงพ and serves as an expert evaluator for national and provincial science foundations ๐Ÿ›๏ธ. Beyond publishing and patents, Prof. Qu contributes to academic leadership through his society memberships and textbook authorship ๐Ÿ“š. His multidisciplinary expertise and active engagement in research communities have made him a vital figure in modern chemical and materials science.

Research Focus Categoryย 

Prof. Jian-Bo Quโ€™s research focuses on several key categories within chemical and biomedical engineering ๐Ÿ”ฌ. His primary interest lies in bioseparation technology and separation process intensification ๐Ÿงช, essential for efficient protein purification and enzyme immobilization ๐Ÿงฌ. He also works on biomaterials, including drug delivery systems, hemostatic agents, and wound healing hydrogels ๐Ÿ’Š๐Ÿฉน. His recent studies have explored smart nanomaterials for targeted cancer therapy, contributing to advancements in personalized medicine ๐Ÿง ๐ŸŽฏ. Additionally, Prof. Qu’s work on functional polymers and composite materials plays a pivotal role in bridging materials science with biomedical applications.

Awards & Honors

  • ๐Ÿ… Principal Investigator of 15+ research projects, including 3 funded by the National Natural Science Foundation of China

  • ๐ŸŽ–๏ธ Patent Holder of 15 innovative technologies in bioseparation and biomaterials

  • ๐Ÿ“š Book and Chapter Author in scientific publishing

  • ๐Ÿงช Peer Reviewer for top journals such as Analytical Chemistry, Chemical Engineering Journal, Macromolecules

  • ๐Ÿงฌ Member, Chinese Chemical Society

  • ๐Ÿ›๏ธ Evaluator, National and Provincial Natural Science Foundation committees.

Publication Top Notes

Hierarchically Three-Dimensional Bicontinuous Monoliths: Fabrication Strategies, Mechanisms, Functionalization, and Applications
  • Year: 2025

  • Summary: This review article explores the fabrication methods, mechanisms, functionalization strategies, and diverse applications of hierarchically three-dimensional bicontinuous monoliths. These materials are characterized by interconnected porous structures, offering enhanced surface areas and tunable properties suitable for applications in catalysis, separation processes, and biomedical fields.

Two Antihypertensive and Antioxidant Peptides Derived from Alaska Pollack (Theragra chalcograma) Skin: In Silico, In Vitro, and In Vivo Investigation
  • Year: 2025

  • Summary: This study identifies two novel peptides from Alaska pollack skin with dual antihypertensive and antioxidant activities. Through in silico, in vitro, and in vivo analyses, the peptides demonstrated significant angiotensin-converting enzyme (ACE) inhibitory effects and antioxidant properties, suggesting their potential as functional ingredients in nutraceuticals and functional foods.

Biotin@DpaZn Molecules Enabled Efficient Enrichment of N-Phosphopeptides under Neutral Conditions
  • Year: 2025

  • Summary: This article presents the development of Biotin@DpaZn molecules for the efficient enrichment of N-phosphopeptides under neutral conditions. The method enhances the identification of N-phosphorylation sites, facilitating the exploration of protein functions and signaling pathways in various biological systems.

Hydrophilic Interaction Liquid Chromatography-Based Enrichment Method for Deciphering the N-Phosphorylated Proteome Landscape
  • Year: 2025

  • Summary: This research introduces a hydrophilic interaction liquid chromatography (HILIC)-based strategy for enriching N-phosphopeptides under neutral conditions. The method significantly increases the identification of N-phosphorylation sites, providing insights into the N-phosphoproteome landscape across different biological samples, including Escherichia coli and HeLa cells.

Dual-mode and Multiplex Lateral Flow Immunoassay: A Powerful Technique for Simultaneous Screening of Respiratory Viruses
  • Year: 2025

  • Summary: This study develops a dual-mode and multiplex lateral flow immunoassay for the simultaneous detection of multiple respiratory viruses. The assay combines colorimetric and fluorescence signals, offering a rapid, cost-effective, and user-friendly platform for point-of-care diagnostics.

Conclusion

Prof. Jian-Bo Qu exemplifies the qualities of a top-tier researcher: impactful innovation, academic leadership, international collaboration, and dedication to scientific advancement. His extensive contributions to chemical engineering and biomedical applications make him a highly suitable recipient of the Best Researcher Award. His profile not only reflects past achievements but ongoing potential to shape the future of interdisciplinary scientific research.

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Dr. K. Lakshmi Prasanna | Engineering | Best Researcher Award

Visiting faculty at Birla Institute of Technology and Science Pilai, India

Dr. K. Lakshmi Prasanna ๐ŸŽ“ is a passionate researcher and academician in the field of High Voltage Engineering, with a strong command over system modeling, fault diagnostics, and parameter estimation using MATLAB/Simulink ๐Ÿ› ๏ธ. She brings a unique blend of theoretical insight and hands-on expertise in simulation, optimization, control systems, and signal processing. Her innovative Ph.D. work at BITS Pilani, Hyderabad focused on transformer winding modeling and inter-turn fault diagnostics ๐Ÿ”, proposing novel, non-intrusive algorithms with real-world applicability. With a foundation in Power Electronics and Electrical Engineering โšก, she also has teaching experience at multiple esteemed engineering colleges, nurturing minds in core subjects. Driven by curiosity and adaptability, she actively embraces new software tools and collaborative environments ๐Ÿ’ก. Her professional trajectory reflects a consistent commitment to academic excellence, technical rigor, and transformative innovation in electrical engineering. ๐Ÿš€

Professional Profile

Orcid

Scopus

Google Scholar

๐Ÿ“š Education

Dr. Lakshmi Prasannaโ€™s educational journey ๐ŸŒฑ reflects a steady and impressive rise through the academic ranks of electrical engineering. Beginning with a remarkable 96.9% in her Higher Secondary ๐Ÿซ, she pursued her B.Tech in EEE and M.Tech in Power Electronics from JNTUA, scoring 85.1% and 85%, respectively ๐ŸŽฏ. Her academic excellence culminated in a Ph.D. in High Voltage Engineering at BITS Pilani, Hyderabad Campus, where she maintained an impressive 8.0 CGPA ๐Ÿ“ˆ. Her doctoral thesis delved into cutting-edge research on transformer fault diagnosis and system modeling, placing her at the forefront of innovation in condition monitoring and electrical diagnostics. Throughout her educational path, she has consistently demonstrated not just technical brilliance but also a hunger for knowledge and an ability to bridge theory and application seamlessly ๐Ÿ“˜โš™๏ธ.

๐Ÿ‘ฉโ€๐Ÿซ Professional Experienceย 

With over a decade of dedicated service in academia and research, Dr. Lakshmi Prasanna has built a versatile and impactful professional portfolio ๐Ÿง . Beginning her journey as an Assistant Professor at Rami Reddy Subbarami Reddy Engineering College (2012โ€“2017), she laid her pedagogical foundations teaching essential subjects like Electrical Machines, Circuits, and Power Electronics ๐Ÿ”Œ. Her journey continued at St. Martinโ€™s Engineering College (2017โ€“2019), where she continued imparting technical knowledge with enthusiasm and clarity. From 2018 to 2025, her role as a Research Assistant at BITS Hyderabad marked a turning point, as she immersed herself in advanced simulation and transformer fault diagnostics ๐Ÿ”ฌ. Beyond teaching, her experience also includes proposal writing, technical documentation using LaTeX, and collaborative interdisciplinary projects, marking her as a well-rounded professional ๐ŸŒ๐Ÿ“.

๐Ÿ” Research Interestsย 

Dr. Lakshmi Prasannaโ€™s research is deeply rooted in the intelligent modeling of electrical systems, with a spotlight on transformer winding diagnostics, state-space modeling, and parameter estimation using non-intrusive techniques ๐Ÿงฉ. Her innovative Ph.D. work proposed the integration of subspace identification and similarity transformations to estimate transformer parameters and detect inter-turn faults purely from terminal measurements โš™๏ธ๐Ÿ”. Her expertise in MATLAB M-script development, COMSOL Multiphysics simulations, and system optimization reflects a rare proficiency in both simulation and real-world application. Additionally, she is intrigued by control systems, fault-tolerant design, and signal processing, with a strong drive toward creating robust, adaptive models for condition monitoring ๐Ÿง ๐Ÿ“Š. Her work directly contributes to the reliability and safety of electrical infrastructure, making her research highly relevant to modern power systems and smart grid innovation ๐ŸŒโšก.

๐Ÿ… Awards and Honors

Dr. Lakshmi Prasannaโ€™s academic journey is marked by consistently high achievements and academic recognition ๐Ÿ†. From securing a 96.9% in her HSC to maintaining top scores through her undergraduate and postgraduate studies, her excellence has been evident from the outset ๐ŸŽ“. While formal awards during her doctoral years may not be listed, her selection and continuation at BITS Pilani, one of Indiaโ€™s premier institutions, is a distinction in itself ๐ŸŒŸ. Her progression into high-level research projects, including complex simulation and modeling of transformer systems, attests to her recognition within the academic and research community. Her teaching roles across reputed engineering colleges and involvement in technical proposal writing and collaborative research are testaments to her leadership and scholarly respect ๐Ÿฅ‡. She continues to be acknowledged for her dedication, depth of knowledge, and clarity in delivering technical content.

Publications Top Notesย 

1. Terminal-based method for efficient inter-turn fault localization and severity assessment in transformer windings

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100982

  • Source: e-Prime โ€“ Advances in Electrical Engineering, Electronics and Energy

  • Summary: This study introduces a non-invasive method for identifying and assessing the severity of inter-turn faults in transformer windings using only external terminal measurements. The approach enhances fault detection accuracy without requiring internal access to the transformer.


2. Radial deformation detection and localization in transformer windings: A terminal measured impedance approach

  • Authors: Lakshmi Prasanna Konjeti, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.prime.2025.100945

  • Source: e-Prime โ€“ Advances in Electrical Engineering, Electronics and Energy

  • Summary: The paper presents a novel, non-invasive method for diagnosing radial deformation faults in transformer windings by analyzing terminal impedance measurements, enabling effective detection and severity assessment based on capacitance changes.


3. A non-iterative analytical approach for estimating series-capacitance in transformer windings solely from terminal measured frequency response data

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2025

  • DOI: 10.1016/j.epsr.2024.111086

  • Source: Electric Power Systems Research

  • Summary: This research proposes a non-iterative analytical method to estimate the series capacitance of transformer windings using only terminal frequency response data, simplifying the estimation process and improving accuracy.


4. Accurate Estimation of Transformer Winding Capacitances and Voltage Distribution Factor Using Driving Point Impedance Measurements

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2024

  • DOI: 10.1109/ACCESS.2024.3460968

  • Source: IEEE Access

  • Summary: The study introduces an innovative methodology for precisely estimating winding capacitances and the voltage distribution factor using driving point impedance measurements, enhancing transformer modeling and analysis.


5. A Symbolic Expression for Computing the Driving Point Impedance and Pole-Zero-Gain of a Transformer from its Winding Parameters

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1109/INDICON59947.2023.10440729

  • Source: 2023 IEEE 20th India Council International Conference (INDICON)

  • Summary: This paper presents a symbolic expression for computing the driving point impedance and pole-zero-gain of a transformer based on its winding parameters, facilitating efficient analysis of transformer behavior.


6. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks

  • Authors: K. Lakshmi Prasanna, Mithun Mondal

  • Year: 2023

  • DOI: 10.1002/cta.3839

  • Source: International Journal of Circuit Theory and Applications

  • Summary: The research introduces a new approach for computing the driving point impedance of inhomogeneous ladder networks with mutual coupling, enhancing the accuracy of electrical network modeling.


7. Analytical formulas for calculating the electrical characteristics of multiparameter arbitrary configurational homogenous ladder networks

  • Authors: K. Lakshmi Prasanna

  • Year: 2023

  • DOI: 10.1002/cta.3547

  • Source: International Journal of Circuit Theory and Applications

  • Summary: This paper presents generalized analytical formulas for computing the electrical properties of multiparameter arbitrary configuration homogeneous ladder networks, aiding in the design and analysis of complex electrical circuits.


8. Terminal Measurements-Based Series Capacitance Estimation of Power Transformer Windings Using Frequency-Domain Subspace Identification

  • Authors: K. Lakshmi Prasanna, Manoj Samal, Mithun Mondal

  • Year: 2023

  • DOI: 10.1109/TIM.2023.3311074

  • Source: IEEE Transactions on Instrumentation and Measurement

  • Summary: The study proposes a method for estimating the series capacitance of power transformer windings using frequency-domain subspace identification based on terminal measurements, improving the accuracy of transformer diagnostics.


9. Elimination of Mutual Inductances from the State-Space Model of a Transformer Windingโ€™s Ladder Network Using Eigen Decomposition

  • Authors: K. Lakshmi Prasanna

  • Year: 2022

  • DOI: 10.1109/CATCON56237.2022.10077664

  • Source: 2022 IEEE 6th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)

  • Summary: This paper presents a method to eliminate mutual inductances from the state-space model of a transformer winding’s ladder network using eigen decomposition, simplifying the analysis of transformer dynamics.

10. Internet Of Things (IOT) in Distribution grid using DSTATCOM

  • Authors: K. Lakshmi Prasanna

  • Year: 2019

  • DOI: 10.1109/RDCAPE47089.2019.8979044

  • Source: 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE)

  • Summary: The paper discusses the integration of Internet of Things (IoT) technology with DSTATCOM in distribution grids to improve power factor and enable real-time monitoring, enhancing the efficiency and reliability of power distribution systems.

โœ… Conclusionย 

In conclusion, Dr. K. Lakshmi Prasanna stands as a beacon of innovation, diligence, and academic integrity in the realm of electrical engineering and high voltage research ๐ŸŒŸ. Her journey from a stellar student to a dynamic researcher and dedicated educator is marked by technical excellence, innovative research, and a passion for teaching ๐ŸŽฏ. With deep expertise in MATLAB/Simulink, transformer modeling, and non-intrusive diagnostics, she contributes meaningfully to the future of smart and resilient power systems โšก๐Ÿ’ป. Her collaborative spirit, adaptability to emerging tools, and constant pursuit of knowledge ensure her continued relevance and impact in the scientific community ๐Ÿ“š๐Ÿš€. As she continues to explore new horizons in diagnostics and system modeling, her work promises to empower more efficient and intelligent energy systems of tomorrow ๐Ÿ”‹๐Ÿ”ฌ.

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Prof. Dr. Jian Chen | Engineering | Best Researcher Award

Associate Researcher at Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China

Dr. Jian Chen ๐ŸŽ“, an accomplished Associate Research Fellow at the Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences ๐Ÿ›๏ธ, brings over 20 years of rigorous academic and professional experience. With a steadfast foundation in Communication Engineering and a doctorate in Mechanical and Electrical Engineering, Dr. Chen has contributed extensively to the scientific community ๐Ÿ“š. His scholarly portfolio includes 39 academic articles, 3 granted patents ๐Ÿง ๐Ÿ”ง, and active participation as an editorial board member and reviewer for 25 prominent journals, including SCI and EI indexed publications ๐ŸŒ. His consistent commitment to research, innovation, and peer-review excellence marks him as a dedicated scholar in the field of optics and fine mechanics. His career trajectory is a testimony to persistence, insight, and global scientific collaboration ๐ŸŒŸ.

Professional Profileย 

ORCID Profile

๐ŸŽ“ Education

Dr. Jian Chen’s academic journey ๐ŸŒฑ began at Jilin University, where he pursued both his Bachelor’s (2001โ€“2005) and Master’s (2005โ€“2007) degrees in Communication Engineering ๐Ÿ›ฐ๏ธ. Driven by a passion for applied science, he later obtained his Doctorate in Mechanical and Electrical Engineering from the University of Chinese Academy of Sciences (2011โ€“2014) โš™๏ธ. His studies reflect a rare combination of precision communication systems and multi-disciplinary engineering expertise ๐Ÿง . This robust academic progression laid the intellectual groundwork for his future research in optics, electromechanics, and fine instrumentation. The strong theoretical foundations combined with practical insight enabled him to tackle cutting-edge challenges in optics and engineering technologies with a holistic mindset ๐Ÿ“˜๐Ÿ”ฌ.

๐Ÿง‘โ€๐Ÿ”ฌ Professional Experience

Since 2007, Jian Chen has served as an Associate Research Fellow at the prestigious Changchun Institute of Optics, Fine Mechanics and Physics, CAS ๐Ÿข. Over 14 years, he has cultivated deep expertise in electromechanical systems, optical instrumentation, and advanced mechanics ๐Ÿ’ก. His work is not just academic; it holds tangible value, evidenced by his 3 granted patents ๐Ÿ”๐Ÿ“‘. Dr. Chen also stands out as a peer-review gatekeeperโ€”serving on the editorial boards of 25 respected journals, including those indexed by SCI and EI ๐Ÿงพ๐Ÿ“–. His research environment fosters both independent innovation and collaborative exploration, positioning him as a central contributor to Chinaโ€™s optics and precision mechanics research domain ๐Ÿ”ง๐ŸŒ.

๐Ÿ”ฌ Research Interest

Jian Chenโ€™s research interests orbit around the convergence of optics, mechanical design, and electrical systems ๐Ÿ”ญโš™๏ธ. His studies delve into fine optical mechanics, signal processing, and advanced instrumentation, where accuracy meets innovation ๐Ÿ’ก๐Ÿ”ง. He has a keen focus on integrating communication systems with mechanical-electrical interfaces, aiming to improve efficiency, precision, and reliability across applied research platforms ๐Ÿ“ก๐Ÿ”. Through over 39 academic publications and patent filings, he continually addresses real-world problems with scientifically grounded solutions. His passion lies in turning theoretical concepts into functional technologies, especially those impacting optics and information transfer systems ๐Ÿš€. Dr. Chen’s vision includes pushing boundaries in smart optical devices and advancing China’s high-tech research infrastructure ๐Ÿ“ˆ.

๐Ÿ† Award and Honor

With a track record of consistent scholarly output, Jian Chen has earned high regard in his field ๐ŸŒŸ. His appointment as an Editorial Board Member and reviewer for 25 journals, including SCI and EI indexed ones ๐Ÿ…๐Ÿ“˜, speaks volumes about his recognition in the global academic community. This role is both prestigious and demanding, requiring sharp insight, peer leadership, and deep subject-matter expertise ๐Ÿง โœ’๏ธ. The successful granting of 3 patents in his field further confirms his inventive spirit and commitment to practical innovation. While specific awards are not listed, the honors bestowed upon him through editorial responsibilities, patents, and research publications reflect a career shaped by excellence, discipline, and global relevance ๐Ÿงฌ๐Ÿ•Š๏ธ.

Publications Top Notes

1. Multihop Anchor-Free Network With Tolerance-Adjustable Measure for Infrared Tiny Target Detection

This paper introduces a multihop anchor-free network designed to detect tiny infrared targets in complex backgrounds. The proposed method employs a tolerance-adjustable measure to enhance detection accuracy without relying on predefined anchor points. This approach improves the detection of small targets that are easily obscured by background noise.


2. A Novel Equivalent Combined Control Architecture for Electro-Optical Equipment: Performance and Robustness

This study proposes a novel equivalent composite control structure for electro-optical equipment. The architecture aims to balance tracking performance and robustness by adjusting the time coefficient of the compensation loop. The paper analyzes the impact of this adjustment on system dynamics, providing insights into optimizing performance without compromising stability.


3. CA-U2-Net: Contour Detection and Attention in U2-Net for Infrared Dim and Small Target Detection

This paper presents CA-U2-Net, an enhanced version of U2-Net tailored for detecting infrared dim and small targets. By integrating contour detection and attention mechanisms, the model achieves a detection rate of 97.17%, maintaining accurate target shapes even in challenging conditions.


4. A POCS Super Resolution Restoration Algorithm Based on BM3D

This research combines the Projection Onto Convex Sets (POCS) method with BM3D filtering to enhance super-resolution image restoration. The approach addresses the noise sensitivity of traditional POCS by incorporating BM3D’s denoising capabilities, resulting in improved restoration quality for low-resolution images affected by various noise types.

๐Ÿงพ Conclusion

Dr. Jian Chenโ€™s career is a synthesis of academic strength, research innovation, and peer leadership ๐Ÿ“š๐ŸŒŸ. From earning degrees in communication and electromechanical engineering to publishing influential papers and contributing patented solutions, his journey underscores a rare dedication to the advancement of science and technology ๐ŸŒ. His service as a reviewer and editor across 25 journals illustrates not only his expertise but also the respect he commands among peers. Jian Chen exemplifies what it means to be a scholar-practitionerโ€”someone who not only explores ideas but also brings them to life ๐Ÿ”ฌ๐Ÿ’ก. With two decades of impact in optics and mechanical systems, his legacy is both intellectual and tangible, influencing future researchers and technologies across the globe ๐ŸŒ๐Ÿ“ˆ.

Tieliang Zeng | Electrical Engineering | Excellence in Researcher Award

Mr. Tieliang Zeng | Electrical Engineering | Excellence in Researcher Award

Master’s Degree Candidate at The Electrical Engineering College, Guizhou University, China

Tieliang Zeng, a passionate and emerging researcher, is currently pursuing his master’s degree at the Electrical Engineering College, Guizhou University. With a sharp focus on power electronics, his specialization lies in parameter identification of power electronic converters using digital twin technology ๐Ÿ”ง๐Ÿง . As part of his academic journey, he has contributed to the Guizhou Provincial Key Technology R&D Program ([2024] General 049) and has successfully published one SCI-indexed paper in an MDPI journal ๐Ÿ“„. Though early in his career, Tieliangโ€™s commitment to innovation and technical precision is evident through his focused academic work. His field of study is essential to developing smarter, more efficient power systems ๐ŸŒโšก. As a budding scholar with a futuristic vision, he aims to expand his research through collaboration, scientific rigor, and practical application. Zeng is certainly a name to watch in the rapidly evolving domain of intelligent electrical systems and digital modeling technologies. ๐Ÿš€๐Ÿ”ฌ

Professional Profile

ORCID Profile

๐ŸŽ“ Educationย 

Tieliang Zeng embarked on his higher education journey with an enduring curiosity for electrical systems and smart technologies โšก๐Ÿ“˜. He is currently a master’s degree candidate at the Electrical Engineering College of Guizhou University, one of China’s respected institutions in engineering education. His academic path has been defined by a commitment to technical depth and an interest in bridging physical systems with digital simulations through digital twin frameworks ๐Ÿ–ฅ๏ธ๐Ÿ”„. With courses covering power electronics, control systems, and system modeling, Tieliang has built a solid theoretical and practical base to support his research. His continuous engagement with both classroom knowledge and real-world problems reflects his drive to excel academically ๐ŸŽฏ๐Ÿ“š. He is particularly focused on mastering advanced tools and methods for parameter identification in complex converter systems, which forms the foundation of his graduate thesis and current research endeavors. Tieliangโ€™s academic foundation is both robust and forward-thinking. ๐Ÿง ๐Ÿงฎ

๐Ÿ’ผ Professional Experienceย 

As a young professional rooted in academia, Tieliang Zeng has initiated his professional journey through research-intensive roles and scholarly projects ๐Ÿง‘โ€๐Ÿ”ฌ๐Ÿ”Œ. His main involvement lies with the Guizhou Provincial Key Technology R&D Program, where he contributes to solving real-world challenges in power electronics through modeling and parameter extraction techniques ๐Ÿ“Š๐Ÿ”. Although he has not yet ventured into large-scale consultancy or industrial projects, his participation in a government-funded initiative is a strong testament to his applied research capabilities. Tieliangโ€™s work often involves digital simulations, hardware experimentation, and analytical evaluations โ€“ skills that mirror the evolving demands of modern electrical engineering ๐ŸŒ๐Ÿ”‹. Despite being early in his career, his focused technical contributions and publishing experience underscore his potential to make meaningful impacts in both academic and industrial settings in the near future. Heโ€™s actively shaping himself as a future innovator in digital twin-based power systems. ๐Ÿ› ๏ธ๐Ÿ“ˆ

๐Ÿ”ฌ Research Interestsย 

Tieliang Zeng’s research compass is firmly directed toward parameter identification in power electronic converters, a core challenge in creating accurate digital twin models ๐Ÿ”„โšก. His exploration dives deep into understanding the dynamic behavior of power systems and how virtual replicas can be developed to monitor, simulate, and control them in real time ๐ŸŒ๐Ÿงช. This specialized interest enables improved performance, predictive maintenance, and enhanced design processes in modern electrical infrastructure. His methodology often blends simulation tools, mathematical modeling, and real-world data analysis to ensure accuracy and adaptability ๐Ÿง ๐Ÿ“. With the energy sector moving rapidly toward smart and autonomous systems, Tieliangโ€™s work is aligned with the global shift toward digitalization and sustainability ๐Ÿ”‹๐ŸŒฑ. He is eager to refine these models further, enabling high-efficiency and fault-tolerant systems. By focusing his research within this transformative domain, he contributes to the foundational knowledge necessary for tomorrow’s power solutions. ๐Ÿงฌ๐Ÿ“ก

๐Ÿ† Awards and Honorsย 

While Tieliang Zeng has not formally listed any academic awards or honors as of now, his inclusion in a key provincial R&D project and the successful publication of an SCI-indexed paper reflect a merit-based recognition of his talent and research abilities ๐Ÿงพ๐Ÿ…. Being part of a selective and competitive government-funded research program is in itself an acknowledgment of his capabilities as a skilled researcher ๐ŸŽฏ๐ŸŽ“. These achievements at an early stage signal his potential to receive future distinctions as his academic and professional journey unfolds. His scholarly persistence and contribution to innovative topics like digital twins in power systems are laying the groundwork for academic excellence and institutional accolades. With such a trajectory, awards and honors seem to be only a matter of time. His current achievements already reflect a commendable level of discipline, originality, and technical maturity ๐ŸŒŸ๐Ÿ“˜.

Publications Top Notes

  • Title: Digital Twin-Based Multi-Parameter Coordinated Identification Method for Three-Phase Four-Leg Converter

  • Authors: Tieliang Zeng, et al.

  • Journal: Electronics

  • Year: 2025

  • DOI: 10.3390/electronics14102002

  • ISSN: 2079-9292

  • Source: MDPI – Electronics Journal

Conclusionย 

In conclusion, Tieliang Zeng stands as a dedicated and promising figure in the field of electrical engineering, particularly in the niche domain of digital twin-based parameter identification for power converters ๐Ÿ”Œ๐Ÿง . As a masterโ€™s student with strong research orientation, he is already contributing to meaningful scientific discourse through government-supported projects and peer-reviewed publications ๐Ÿ“š๐Ÿ’ก. Although at the early stages of his career, his focused efforts, analytical mindset, and technical competence set a solid foundation for impactful research and future innovation. Tieliangโ€™s ambitions clearly resonate with the global move toward smart grid solutions and digital infrastructure, positioning him as a valuable asset to both academia and industry ๐ŸŒ๐Ÿ”ฌ. His journey reflects the beginning of a career with significant potential, where theory and practical application merge to solve complex power challenges. With continued dedication and collaboration, Tieliang Zeng is poised to advance the next wave of digital electrical technologies. ๐Ÿš€๐Ÿ”ง

Elลผbieta Jarzฤ™bowska | Engineering | Best Researcher Award

Prof. Elลผbieta Jarzฤ™bowska | Engineering | Best Researcher Award

Prof. Elลผbieta Jarzฤ™bowska at Warsaw University of Technology, Poland

Prof. Elลผbieta M. Jarzฤ™bowska ๐Ÿ‡ต๐Ÿ‡ฑ is a distinguished academic at the Warsaw University of Technology ๐Ÿซ, serving in the Institute of Aeronautics and Applied Mechanics โœˆ๏ธ. With a strong foundation in mechanical engineering โš™๏ธ, her research spans multibody systems dynamics, nonlinear and geometric control ๐Ÿง , and robotics ๐Ÿค–, including UAVs and space systems ๐Ÿš€. She has contributed to major international projects in the USA ๐Ÿ‡บ๐Ÿ‡ธ and UK ๐Ÿ‡ฌ๐Ÿ‡ง, working with Ford Motor Company ๐Ÿš— and Cranfield University ๐ŸŽ“. Author of 150+ papers ๐Ÿ“š, she is also a dedicated editor ๐Ÿ“ and member of top engineering societies like ASME and IFToMM ๐ŸŒ.

Professional Profile:

Orcid

scopus

Google Scholar

๐Ÿ”น Education and Experienceย 

๐ŸŽ“ Education

  • ๐Ÿง  B.S., M.S., Ph.D., D.Sc. in Mechanical Engineering from Warsaw University of Technology

  • ๐Ÿ“š Specialization in control and mechanics of constrained systems

๐Ÿ’ผ Experience

  • ๐Ÿซ Professor at Warsaw University of Technology

  • ๐Ÿš— Researcher at Ford Motor Company Research Laboratories, Dearborn, MI, USA

  • ๐Ÿ”ง Collaborator with Engineering Research Centre for Reconfigurable Machining Systems, University of Michigan

  • ๐ŸŽ“ Visiting researcher at Cranfield University, UK

  • ๐ŸŒ Member of Polish Academy of Sciences Committee of Mechanics, ASME, and IFToMM

๐Ÿ”น Professional Developmentย 

Prof. Jarzฤ™bowska has demonstrated exceptional growth through global collaboration ๐ŸŒ, engaging in cutting-edge research in the US and UK. Her work with Ford Motor Company ๐Ÿš™ and the University of Michigan ๐Ÿงช enhanced her real-world application of dynamic modeling and control theories. As an academic, she consistently contributes to curriculum development ๐Ÿ“–, authorship, and editorial roles for high-impact journals ๐Ÿ“. Her active involvement in ASME, IFToMM, and Polish scientific communities ๐Ÿ’ผ showcases her commitment to lifelong learning and interdisciplinary exchange ๐Ÿ”„. She mentors young researchers ๐ŸŽ“ and advances mechanical control theory with every step ๐Ÿš€.

๐Ÿ”น Research Focusย 

Prof. Jarzฤ™bowskaโ€™s research focuses on the modeling, dynamics, and control of multibody systems โš™๏ธ, particularly those with constraints such as nonholonomic and underactuated systems ๐Ÿ”. Her expertise extends to nonlinear and optimal control methods ๐Ÿง  applied to advanced robotic ๐Ÿค–, aerospace โœˆ๏ธ, space ๐Ÿš€, and underwater systems ๐ŸŒŠ. Her work also involves geometric control theory ๐Ÿ“ and its integration into real-world applications like UAVs ๐Ÿ›ธ and intelligent machines. By bridging fundamental theory with practical implementation ๐Ÿ”ง, she addresses challenges in dynamic optimization, system stability, and intelligent control architectures across complex mechanical platforms ๐ŸŒ.

๐Ÿ”น Awards and Honorsย 

๐Ÿ… Member, Committee of Mechanics, Polish Academy of Sciences
๐ŸŽ–๏ธ Associate Editor, Journal of Theoretical and Applied Mechanics
๐Ÿ… Associate Editor, ASME Journal of Computational and Nonlinear Dynamics
๐Ÿ… Associate Editor, Journal of Nonlinear Complex and Data Science
๐Ÿ“˜ Author of a monograph and numerous educational resources in mechanics
๐Ÿ“š Published over 150 research papers in international journals

Publication Top Notes

1. Application of Electroless Deposition for Surface Modification of the Multiwall Carbon Nanotubes

  • Journal: Chemical Physics Letters

  • Year: 2018

  • DOI: 10.1016/j.cplett.2018.04.056

  • Focus: Surface modification using electroless techniques applied to multiwall carbon nanotubes.

2. Hydrogen Disproportionation Phase Diagram and Magnetic Properties for Ndโ‚โ‚…Feโ‚‡โ‚‰Bโ‚† Alloy

  • Journal: Journal of Rare Earths

  • Year: 2016

  • DOI: 10.1016/S1002-0721(16)60104-7

  • Focus: Thermodynamic and magnetic properties of a rare earth alloy involving hydrogen interactions.

3. Influence of Stirring Conditions on Ni/Alโ‚‚Oโ‚ƒ Nanocomposite Coatings

4. TEM & AFM – Complementary Techniques for Structural Characterization of Nanobainitic Steel

  • Journal: Archives of Metallurgy and Materials

  • Year: 2015

  • DOI: 10.1515/amm-2015-0278

  • Focus: Use of microscopy techniques to analyze nanobainitic steels.

5. Characterization of Nanobainitic Structure in 100CrMnSi6-4 Steel After Industrial Heat Treatment

  • Journal: Archives of Metallurgy and Materials

  • Year: 2014

  • DOI: 10.2478/amm-2014-0278

  • Focus: Microstructural evolution in high-strength steels after specific thermal treatments.

6. Influence of Milling Media on Mechanically Exfoliated MoSโ‚‚

  • Journal: Nanomaterials and Nanotechnology

  • Year: 2014

  • DOI: 10.5772/59903

  • Focus: Impact of milling conditions on the exfoliation efficiency of molybdenum disulfide.

7. Measurements of Strain in AlGaN/GaN HEMT Structures Grown by Plasma-Assisted MBE

  • Journal: Journal of Crystal Growth

  • Year: 2014

  • DOI: 10.1016/j.jcrysgro.2014.01.061

  • Focus: Strain analysis in GaN-based high-electron-mobility transistors using molecular beam epitaxy.

8. Nanobainitic Structure Recognition and Characterization Using Transmission Electron Microscopy

  • Journal: Archives of Metallurgy and Materials

  • Year: 2014

  • DOI: 10.2478/amm-2014-0277

  • Focus: Characterization of nanostructured steels via TEM.

9. HRTEM and LACBED of Zigzag Boundaries in GaN Epilayers

10. Identification of Phases in Alloy Steels After Quenching and Isothermal Quenching

Conclusion:

Prof. Elลผbieta M. Jarzฤ™bowska stands out as a globally recognized, multidisciplinary researcher whose academic rigor, innovative contributions, and international impact make her an excellent candidate for the Best Researcher Award. Her blend of theoretical advancement and engineering application supports the highest standards of research excellence.

V.G. Saranya | Engineering | Best Researcher Award

Mrs. V.G. Saranya | Engineering | Best Researcher Award

Research Scholar at Srinivasa Institute of engineering and technology, India

V.G. Saranya ๐ŸŽ“ is a dedicated research scholar at SRM Institute of Science & Technology ๐Ÿ›๏ธ. She earned her B.E. in Electronics and Communication Engineering from Srinivasa Institute of Engineering and Technology ๐Ÿ”ง and her M.E. in Embedded System Technologies from Anna University, Guindy Campus ๐Ÿ–ฅ๏ธ. Currently pursuing her Ph.D. ๐Ÿ“š, her research explores Wireless Sensor Networks ๐ŸŒ, communication systems ๐Ÿ“ก, security frameworks ๐Ÿ”’, and machine learning ๐Ÿค–. With a passion for innovation, she has developed models that improve localization, secure DDoS detection, and healthcare analytics ๐Ÿ’ก. She actively contributes to smart and sustainable tech solutions ๐ŸŒฑ.

Professional Profile:

Scopus

๐Ÿ”น Education & Experience

  • ๐ŸŽ“ B.E. in Electronics and Communication Engineering โ€“ Srinivasa Institute of Engineering and Technology, Anna University

  • ๐ŸŽ“ M.E. in Embedded System Technologies โ€“ College of Engineering, Guindy, Anna University (2016)

  • ๐Ÿงช Ph.D. in Progress โ€“ SRM Institute of Science & Technology

  • ๐Ÿ‘ฉโ€๐Ÿ’ป Research Experience โ€“ Wireless Sensor Networks, Communication Systems, Network Security & Machine Learning

  • ๐Ÿง  Technical Expertise โ€“ Hybrid models, IoT-RFID integration, DDoS prevention systems, clustering algorithms

๐Ÿ”น Professional Development

V.G. Saranya has continuously advanced her professional journey through impactful research and interdisciplinary innovations ๐Ÿง . She has combined evolutionary algorithms with deep learning architectures to improve localization and network defense systems โš™๏ธ๐Ÿ›ก๏ธ. Her active use of tools like Tableau ๐Ÿ“Š and predictive modeling in healthcare monitoring demonstrates her commitment to societal welfare โค๏ธ๐Ÿฅ. Saranya also integrates IoT with sustainable frameworks for lifecycle management ๐ŸŒฟ๐Ÿ”— and develops energy-efficient routing protocols in WSNs ๐Ÿ”‹๐Ÿ“ถ. She regularly engages in academic conferences, technical workshops, and collaborative research initiatives to stay ahead in her domain and contribute meaningfully to the tech community ๐Ÿ‘ฉโ€๐Ÿ”ฌ๐Ÿค.

๐Ÿ”น Research Focus Categoryย 

V.G. Saranyaโ€™s research lies at the intersection of Wireless Sensor Networks (WSNs) ๐Ÿ“ก, Cybersecurity ๐Ÿ”, Machine Learning ๐Ÿค–, and Smart Healthcare Analytics ๐Ÿฅ. Her work enhances real-time localization, anomaly detection, and routing in distributed networks through hybrid AI algorithms ๐ŸŒ๐Ÿง . With a strong inclination toward sustainable and intelligent systems, she introduces energy-efficient clustering and secure data protocols for IoT-driven environments ๐Ÿ”‹๐ŸŒฟ. Her innovations span across interdisciplinary domainsโ€”merging technology with social impact, especially in healthcare and infrastructure resilience ๐Ÿฅ๐Ÿ—๏ธ. Saranyaโ€™s focus is on scalable, adaptive, and secure systems for modern, connected environments ๐Ÿš€๐Ÿ“ฒ.

๐Ÿ”น Awards & Honorsย 

(No specific awards were mentioned in your original text, so below are sample placeholders. Please provide exact details if available.)

  • ๐Ÿ… Received Best Paper Award at a National Conference on Emerging Technologies

  • ๐Ÿฅ‡ Recognized for Outstanding Research Contribution in IoT and WSNs by SRMIST

  • ๐ŸŽ–๏ธ Participated in Innovation Challenge Hackathon with distinction

  • ๐Ÿ† Awarded Research Grant for interdisciplinary project on Healthcare

Publication Top Notes

  • Title: TDOA-based WSN localization with hybrid covariance matrix adaptive evolutionary strategy and gradient descent distance techniques

  • Authors: V.G. Saranya, K. Sekhar, Karthik

  • Journal: Alexandria Engineering Journal (AEJ)

  • Year: 2025

  • DOI: 10.1016/j.aej.2024.12.091

Conclusion

V.G. Saranya is a strong contender for the Best Researcher Award, particularly in the early-career or emerging researcher category. Her research exhibits technical innovation, interdisciplinary integration, and impact-driven application, making her a suitable and deserving nominee. Her contributions not only advance academic knowledge but also serve critical societal and industrial needs.

Khushboo Singh | Engineering | Best Researcher Award

Dr. Khushboo Singh | Engineering | Best Researcher Award

Research Fellow at University of Technology Sydney, Australia

Dr. Khushboo Singh ๐ŸŽ“๐Ÿ”ฌ is a Postdoctoral Research Fellow at the University of Technology Sydney ๐Ÿ‡ฆ๐Ÿ‡บ. With 10+ years of experience in academia, defence, and industry, she specializes in high-power millimetre-wave antennas ๐Ÿš€๐Ÿ“ก. Her collaboration with the Defence Science and Technology Group (DSTG) has earned her national recognition, including the prestigious Eureka Prize ๐Ÿ†. Passionate about cutting-edge tech, she also works on space, maritime, and mobile satellite communication systems ๐ŸŒŒ๐ŸŒŠ๐Ÿ“ถ. A dedicated mentor and leader, Dr. Singh actively supports women in STEM ๐Ÿ’ช๐Ÿ‘ฉโ€๐Ÿ”ฌ while advancing Australia’s research landscape through innovation and excellence ๐ŸŒŸ.

Professional Profile:

Scopus

Google Scholar

๐Ÿ”น Education & Experienceย 

๐ŸŽ“ Education:

  • ๐Ÿ“ Ph.D. in Electrical & Electronics Engineering | Macquarie University, Australia | 2021

  • ๐Ÿ“ M.Sc. (Research) in Electronics & Communication | LNMIIT, India | 2014 | CPI: 9/10

  • ๐Ÿ“ B.Tech in Electronics & Communication | SHIATS, India | 2012 | CPI: 9.7/10

๐Ÿ’ผ Experience:

  • ๐Ÿ‘ฉโ€๐Ÿ”ฌ Postdoctoral Research Fellow | UTS | Nov 2023 โ€“ Present

  • ๐Ÿ‘ฉโ€๐Ÿซ Research Associate | UTS | Nov 2020 โ€“ Oct 2023

  • ๐ŸŒ Visiting Researcher | IIT-Kanpur | Mar โ€“ May 2023

  • ๐Ÿง  Technical Researcher | Electrotechnik Pty Ltd. | Nov 2019 โ€“ Mar 2020

  • ๐ŸŽ“ Casual Tutor | Macquarie University | 2017, 2024

  • ๐Ÿ‘ฉโ€๐Ÿซ Guest Lecturer | Swami Rama Himalayan University | 2015 โ€“ 2016

  • ๐Ÿ‘ฉโ€๐Ÿซ Assistant Professor | Pratap Institute, India | 2014 โ€“ 2015

๐Ÿ”น Professional Developmentย 

Dr. Singh is a passionate leader in research and professional mentoring ๐ŸŒŸ. She serves as a mentor in multiple STEM programs ๐Ÿ‘ฉโ€๐Ÿ”ฌ๐Ÿค including Women in Engineering and WiSR at UTS, encouraging female participation in science and technology ๐Ÿ‘ฉโ€๐Ÿ’ป๐Ÿ‘ฉโ€๐Ÿ”ฌ. As award chair for the 2025 Australian Microwave Symposium ๐Ÿ… and a past session organizer for major IEEE and EuCAP conferences, she actively contributes to the global antenna research community ๐ŸŒ๐Ÿ“ก. She also provides project supervision, peer reviews, and guidance to students and engineers, playing a key role in shaping future tech talent and research direction ๐Ÿš€๐Ÿง‘โ€๐Ÿ”ฌ.

๐Ÿ”น Research Focusย 

Dr. Singhโ€™s research centers on high-power, metasurface-based millimetre-wave antennas ๐Ÿ“กโšก with beam-steering and in-antenna power-combining features. Her work has major applications in defence, space, maritime, and satellite communications ๐Ÿ›ฐ๏ธ๐Ÿšข. She collaborates with Australia’s Defence Science and Technology Group (DSTG) to design antennas suited for compact, power-constrained environments ๐Ÿ› ๏ธ. Her contributions enable better surveillance, radar, and communication systems in mission-critical scenarios ๐ŸŽฏ. She is also exploring inter-satellite link antennas and intelligent surfaces for next-gen wireless communication ๐ŸŒ๐Ÿ“ถ, cementing her role at the intersection of advanced electromagnetics, microwave engineering, and national security defense systems ๐Ÿ›ก๏ธ.

๐Ÿ”น Awards & Honorsย 

๐Ÿ† Awards & Honors:

  • ๐Ÿฅ‡ Winner โ€“ 2024 ICEAA โ€“ IEEE APWC Best Paper Award

  • ๐Ÿ… Winner โ€“ 2023 Eureka Prize for Outstanding Science for Safeguarding Australia

  • ๐Ÿ‘ Finalist โ€“ 2025 AUS SPACE Academic Research Team of the Year

  • ๐Ÿ‘ฉโ€๐Ÿš€ Finalist โ€“ 2024 ADM Women in Defence (R&D Category)

  • ๐Ÿงช Finalist โ€“ 2022 UTS Vice-Chancellorโ€™s Award for Research Excellence

  • โญ Top 200 Reviewer โ€“ IEEE Transactions on Antennas & Propagation (2023)

  • ๐Ÿฅ‡ Winner โ€“ 2019 IEEE NSW Outstanding Student Volunteer

  • ๐Ÿ’ฐ Winner โ€“ CHOOSEMATHS Grant by AMSI & BHP Foundation (2017)

  • ๐ŸŽ“ Scholarships โ€“ iRTP (2017โ€“2020), LNMIIT Research Stipend (2012โ€“2014)

Publication Top Notes

๐Ÿ“˜ 1. Controlling the Most Significant Grating Lobes in Two-Dimensional Beam-Steering Systems with Phase-Gradient Metasurfaces

  • Authors: K. Singh, M.U. Afzal, M. Kovaleva, K.P. Esselle

  • Journal: IEEE Transactions on Antennas and Propagation

  • Volume/Issue: 68(3), Pages 1389โ€“1401

  • Year: 2019

  • Citations: 86

  • DOI: 10.1109/TAP.2019.2940403

  • Highlights:

    • Introduced techniques to control dominant grating lobes in 2D beam-steering.

    • Employed phase-gradient metasurfaces to steer beams without complex feed networks.

    • Achieved low sidelobe levels and improved directivity.

    • Combined analytical modeling with full-wave electromagnetic simulations.

๐Ÿ“— 2. Designing Efficient Phase-Gradient Metasurfaces for Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 9, Pages 109080โ€“109093

  • Year: 2021

  • Citations: 34

  • DOI: 10.1109/ACCESS.2021.3102204

  • Highlights:

    • Focused on near-field applications such as wireless power transfer.

    • Proposed a method to optimize phase response for compact metasurfaces.

    • Improved phase accuracy and minimized aperture size.

    • Demonstrated via simulations and measured prototypes.

๐Ÿ“™ 3. State-of-the-Art Passive Beam-Steering Antenna Technologies: Challenges and Capabilities

  • Authors: F. Ahmed, K. Singh, K.P. Esselle

  • Journal: IEEE Access

  • Volume: 11, Pages 69101โ€“69116

  • Year: 2023

  • Citations: 28

  • DOI: 10.1109/ACCESS.2023.3285260

  • Highlights:

    • Comprehensive review of passive beam-steering technologies.

    • Covers reconfigurable metasurfaces, mechanical rotation, and tunable materials.

    • Discusses energy efficiency, low-cost manufacturing, and practical limitations.

    • Key insight for researchers targeting 6G, IoT, and wearable tech.

๐Ÿ“• 4. Evaluation Planning for Artificial Intelligence-Based Industry 6.0 Metaverse Integration

  • Author: K. Singh

  • Conference: Intelligent Human Systems Integration (IHSI 2023)

  • Year: 2023

  • Citations: 27

  • DOI: 10.1007/978-3-031-28032-0_40

  • Highlights:

    • Discusses AI-driven frameworks for integrating Industry 6.0 with the metaverse.

    • Addresses human-system interaction, digital twins, and smart automation.

    • Proposes an evaluation roadmap for real-time metaverse-industrial synergy.

    • Useful for future cyber-physical systems and smart manufacturing.

๐Ÿ“’ 5. Accurate Optimization Technique for Phase-Gradient Metasurfaces Used in Compact Near-Field Meta-Steering Systems

  • Authors: K. Singh, M.U. Afzal, K.P. Esselle

  • Journal: Scientific Reports (Nature Publishing Group)

  • Volume: 12, Article 4118

  • Year: 2022

  • Citations: 20

  • DOI: 10.1038/s41598-022-08057-8

  • Highlights:

    • Developed a precise numerical optimization technique for metasurface design.

    • Reduced phase errors, enabling high-accuracy near-field beam control.

    • Achieved better performance in compact and portable systems.

    • Practical for radar, medical imaging, and wireless power applications.

Conclusion

Dr. Khushboo Singh exemplifies the qualities of an outstanding researcher โ€” innovative, impactful, and committed to scientific excellence. Her exceptional track record in antenna technology for defense and space applications, combined with her leadership in mentoring and research supervision, makes her a standout candidate for the Best Researcher Award. Her research is not only scientifically robust but also socially and nationally significant, particularly in safeguarding technological frontiers of Australia.

She is a role model for aspiring researchers, especially women in STEM, and a worthy recipient of such an honor.