Xuyang Liu | Hadron Physics | Research Excellence Award

Mr. Xuyang Liu | Hadron Physics | Research Excellence Award

Associate Professor | Liaoning University | China

Mr. Xuyang Liu is an active researcher whose work is deeply rooted in hadron physics, contributing substantially to the global understanding of theoretical models and particle interactions within hadron physics. His research spans advanced investigations of baryon structure, multi-quark dynamics, meson cloud effects and form-factor behavior, all of which are central themes within hadron physics. Through high-quality publications, he has strengthened theoretical frameworks that support precision modeling in hadron physics and expanded collaborations with international groups working on perturbative chiral quark approaches and related computational methods. His scholarly contributions demonstrate methodological depth, consistently advancing the predictive capabilities of hadron physics while offering results that inform broader high-energy studies. His influence is reflected in his cumulative publication record, which showcases impactful findings recognized within the hadron physics community. By integrating refined analytical techniques and cross-disciplinary insights, he continually enhances the scientific dialogue surrounding hadron physics, contributing to both conceptual development and practical modeling applications. His sustained commitment to rigorous research has positioned him as a significant contributor to ongoing progress in hadron physics, supporting both theoretical advancement and societal scientific enrichment. Scopus profile of 306 Citations, 30 Documents, 10 h-index.

Citation Metrics (Scopus)

350
250
150
50
0

306
Citations

30
Documents

10
h-index

                                  ■ Citations (Blue)          ■ Documents (Red)           ■ h-index (Green)

Featured Publications

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.