Dr. Tanya Gupta | Computational Fluid Dynamics | Women Researcher Award
Assistant Professor | GLA University | India
Dr. Tanya Gupta is an accomplished academic in Mathematics with expertise in Computational Fluid Dynamics, where her research has extensively focused on heat and mass transfer, hybrid nanofluids, and numerical simulation techniques. She holds a Ph.D. in Mathematics from G.B. Pant University of Agriculture and Technology with her thesis centered on Computational Fluid Dynamics applications, following a master’s and bachelor’s degree in Mathematics from Kumaun University. Professionally, she has served as a Teaching Assistant at G.B. Pant University and currently works as an Assistant Professor at GLA University, Mathura, where she actively teaches Engineering Mathematics, Applied Mathematics, Engineering Calculus, Linear Algebra, and Differential Equations, integrating Computational Fluid Dynamics concepts in her academic approach. Her research interests strongly revolve around Computational Fluid Dynamics, supported by publications in reputed SCI journals, book chapters, and participation in international and national conferences. She has secured prestigious achievements such as CSIR NET JRF, GATE qualification, and the INSPIRE Fellowship, highlighting her academic excellence. Dr. Tanya Gupta has demonstrated research skills in advanced mathematical modeling, Legendre wavelet collocation techniques, nanofluid dynamics, and Computational Fluid Dynamics simulations. She is also actively engaged in professional societies, workshops, and international collaborations enhancing Computational Fluid Dynamics studies. Recognized with several honors, she also contributes administratively at GLA University in examination management, departmental branding, and academic advising. In conclusion, Dr. Tanya Gupta is a dedicated researcher and educator whose career is strongly shaped by her contributions in Computational Fluid Dynamics, making her a significant asset to her institution and the broader scientific community, with Computational Fluid Dynamics serving as the core foundation of her academic and professional identity. Her Google Scholar citations 135, h-index 6, i10-index 4, showcasing measurable research impact.
Profile: Google Scholar
Featured Publications
1. Gupta, T., Pandey, A. K., & Kumar, M. (2024). Numerical study for temperature-dependent viscosity based unsteady flow of GP-MoS2/C2H6O2-H2O over a porous stretching sheet. Numerical Heat Transfer, Part A: Applications, 85(7), 1063–1084.
2. Gupta, T., Pandey, A. K., & Kumar, M. (2024). Effect of Thompson and Troian slip on CNT-Fe3O4/kerosene oil hybrid nanofluid flow over an exponential stretching sheet with Reynolds viscosity model. Modern Physics Letters B, 38(02), 2350209.
3. Upreti, H., Pandey, A. K., Gupta, T., & Upadhyay, S. (2023). Exploring the nanoparticle's shape effect on boundary layer flow of hybrid nanofluid over a thin needle with quadratic Boussinesq approximation: Legendre wavelet approach. Journal of Thermal Analysis and Calorimetry, 148(22).
4. Gupta, T., Pandey, A. K., & Kumar, M. (2024). Shape factor and temperature-dependent viscosity analysis for the unsteady flow of magnetic AlO–TiOCHO–HO using Legendre wavelet technique. Pramana, 98(2), 73.
5. Gupta, T., Kumar, M., Yaseen, M., & Rawat, S. K. (2025). Heat transfer of MHD flow of hybrid nanofluid (SWCNT-MWCNT/C3H8O2) over a permeable surface with Cattaneo–Christov model. Numerical Heat Transfer, Part B: Fundamentals, 86(3), 436–451.