Assist. Prof. Dr. Feng Chieh Lin | Engineering | Research Excellence Award

Assist. Prof. Dr. Feng Chieh Lin | Engineering | Research Excellence Award

Research Assisant Professor | National Taipei University of Technology | Taiwan

Assist. Prof. Dr. Feng Chieh Lin is a distinguished scholar whose contributions continue to strengthen global research in engineering with a focus on advanced motor drive systems, power converter control, and intelligent diagnostic technologies. His work integrates engineering principles with practical innovation to address challenges in mechatronics, motor drives, and power electronic applications. Through sustained research leadership, he has advanced engineering methodologies for high performance electric machines, with a particular emphasis on demagnetization diagnosis, deep learning based sampling analysis, and precision converter control. His academic role enables him to merge engineering theory with industrial insight, building collaborations that promote technology transfer and practical implementation. He has contributed to influential research projects that support national and industrial development, demonstrating how engineering solutions can enhance energy efficiency, operational reliability, and sustainable technological growth. His experience in research management and product innovation has further strengthened his ability to guide engineering development across multidisciplinary domains. He continues to publish impactful work that reflects rigorous engineering analysis, forward looking design perspectives, and practical societal relevance. His publications and citations demonstrate consistent global engagement, and his engineering research has supported collaborations between academia, research institutes, and industry partners. His contributions highlight the role of engineering in advancing intelligent control strategies, improving machine performance, and shaping modern power electronic applications. His expertise positioned at the intersection of engineering science and applied innovation reflects a commitment to knowledge creation and societal benefit. He remains dedicated to fostering engineering excellence while contributing to high level academic and industrial research communities through impactful publications and technical leadership. Scopus profile of 355 Citations, 25 Documents, 10 h index.

Profiles: Scopus | ORCID

Featured Publications

1. Chen, C.-S., Lin, C.-J., Liu, J.-F., & Lin, F.-C. (2026). IPMSM demagnetization fault diagnosis based on ultra-low sampling frequency data re-indexing restoration method. International Journal of Data Science and Analytics.

2. Chen, C.-S., Wu, Y.-Y., Lin, C.-J., & Lin, F.-C. (2025). Reindexing method for ultralow-sampling-rate data used in the diagnosis of demagnetization faults in IPMSM. IEEE Transactions on Instrumentation and Measurement.

3. Chen, C. S., Lin, C. J., Lin, Y. J., & Lin, F. C. (2025). Application of multi-objective optimization for path planning and scheduling: The edible oil transportation system framework. Applied Sciences.

4. Chen, C. S., Lin, F. C., Lin, C. J., & Wu, P. H. (2024). The improved ROS-based MTAR navigation framework for service robot: Motion trajectory analysis regulator. IEEE Access.

5. Chen, C.-S., Lin, C.-J., Yang, F.-J., & Lin, F.-C. (2024). Model design of inter-turn short circuits in internal permanent magnet synchronous motors and application of wavelet transform for fault diagnosis. Applied Sciences.

Jonathan Stromberg | Engineering | Best Researcher Award

Mr. Jonathan Stromberg | Engineering | Best Researcher Award

Undergraduate Research | University of Idaho | United States

Mr. Jonathan Stromberg is an emerging talent in the field of engineering, demonstrating exceptional commitment to research, innovation, and interdisciplinary collaboration. With a solid foundation in biological engineering, his work bridges advanced engineering techniques with environmental and sustainability challenges. His contributions to PFAS and wastewater treatment research showcase deep analytical ability, where he co-authored multiple peer-reviewed publications focused on PFAS defluorination and the optimization of plasma reactor performance. His engineering expertise extends to managing complex analytical systems such as LC-MS, IC, and UV-Vis for evaluating degradation mechanisms, which reflects a practical understanding of applied engineering science. As the lead of a NASA-affiliated wastewater engineering project, Mr. Stromberg has guided a multidisciplinary team in developing an ammonia and biochar-based treatment system, integrating performance-driven engineering design with real-world environmental applications. Beyond laboratory work, he demonstrates leadership and innovation as President of Product Development for a nonprofit organization, directing engineering design and commercialization strategies for a patented drink-safety dispenser. His experience spans project management, technical documentation, and system integration, essential skills for high-level engineering problem-solving. Mr. Stromberg’s global outlook, shaped by his volunteer engineering efforts in Kenya, underscores his dedication to sustainable development and societal impact. His proficiency with tools such as CAD, SolidWorks, MATLAB, and Python reflects a robust engineering skillset adaptable to diverse technological domains. His academic excellence and mentorship as a Supplemental Instruction Leader further highlight his ability to apply engineering principles to educational and collaborative contexts. Mr. Jonathan Stromberg’s professional trajectory exemplifies the integration of innovative engineering research, leadership, and global responsibility, contributing meaningfully to scientific advancement and environmental sustainability. Scopus profile of 287 Citations, 5 Documents, 4 h-index.

Profile: Scopus

Featured Publication

1. Dynamics and equilibrium of heme axial ligation in mesoporous nanocrystalline TiO₂ thin films. (2010). Inorganic Chemistry.