Dr. Adewale Sedara | Engineering | Research Excellence Award

Dr. Adewale Sedara | Engineering | Research Excellence Award

Research Associate | University of Wisconsin-Madison | United States

Dr. Adewale Sedara is a distinguished scholar whose work demonstrates sustained excellence in Engineering research, innovation, and applied impact. His expertise spans Engineering design optimization, Engineering simulation, Engineering soil machine interaction, and Engineering systems modeling, with a strong emphasis on data driven Engineering solutions. Dr. Adewale Sedara has authored multiple peer reviewed Engineering publications that collectively reflect rigorous Engineering methodology and practical Engineering relevance, generating notable citation impact within the global Engineering community. His Engineering research integrates advanced computational Engineering tools with experimental Engineering validation, strengthening collaboration across academic and industry focused Engineering environments. Through interdisciplinary Engineering partnerships, his contributions advance sustainable Engineering practices, agricultural Engineering efficiency, and infrastructure Engineering performance. His Engineering outcomes support societal needs by improving resource efficiency, environmental resilience, and technology driven Engineering decision making. Dr. Adewale Sedara continues to influence Engineering scholarship through high quality Engineering dissemination, collaborative Engineering engagement, and impactful Engineering innovation. Google Scholar profile of 113 Citations, 5 h- index, 2 i10- index.

Citation Metrics (Google Scholar)

113
100
80
60
40
20
0

Citations

113

h-index

5

i10-index

2

Citations

h-index

i10-index

Featured Publications

Dr. Ricardo Alberto Rodríguez Carvajal | Engineering | Excellence in Innovation

Dr. Ricardo Alberto Rodríguez Carvajal | Engineering | Excellence in Innovation

Professor | University of Guanajuato | Mexico

Dr. Ricardo Alberto Rodríguez Carvajal is a distinguished academic whose multidisciplinary contributions have significantly advanced Engineering research, technological innovation, and applied knowledge transfer across institutional, industrial, and social environments. His extensive trajectory reflects leadership in Engineering project development, Engineering management, Engineering innovation, and Engineering-based problem-solving applied to solar energy systems, digital transformation, organizational sustainability, and technology transfer. With a strong record of publications in Engineering journals, collaborative research networks, and participation in national and international Engineering associations, he has demonstrated a consistent capacity to connect Engineering theory with practice through strategic collaborations, patent development, and impactful industrial partnerships. His work spans solar-energy Engineering, materials Engineering, industrial Engineering, and computational Engineering, integrating these fields into high-value technological ecosystems. His role in developing prototypes, coordinating multidisciplinary Engineering teams, and guiding projects from conceptualization to market transfer has strengthened regional innovation capabilities and supported industry-focused research agendas. Through leadership in academic committees, graduate program coordination, and supervision of numerous postgraduate theses in Engineering and innovation, he has also contributed to shaping new generations of specialists capable of applying Engineering principles to emerging societal challenges. His intellectual production includes articles, books, and chapters addressing Engineering processes, knowledge management, and innovation systems, while his participation in collaborative networks has enhanced knowledge circulation across Engineering communities. His societal impact is evident in applied research projects for renewable energy, agro-industrial transformation, technology-based entrepreneurship, and sustainable development, all grounded in rigorous Engineering methodologies. This consolidated profile reflects an academic committed to expanding the frontiers of Engineering and advancing technological solutions with broad social relevance. Google Scholar profile of 200 Citations, 8 h-index, 8 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Herrera-Zamora, D. M., Lizama-Tzec, F. I., Santos-González, I., & others. (2020). Electrodeposited black cobalt selective coatings for application in solar thermal collectors: Fabrication, characterization, and stability. Solar Energy, 207, 1132–1145.

2. Pitalúa-Díaz, N., Herrera-López, E. J., Valencia-Palomo, G., & others. (2015). Comparative analysis between conventional PI and fuzzy logic PI controllers for indoor benzene concentrations. Sustainability, 7(5), 5398–5412.

3. León Lara, J. D., & Rodríguez Carvajal, R. A. (2014). Customer relationship management (CRM), a tool for creating competitive strategies. Epistemus (Sonora), 8(17), 81–87.

4. Isiordia-Lachica, P. C., Valenzuela, A., Rodríguez-Carvajal, R. A., & others. (2020). Identification and analysis of technology and knowledge transfer experiences for the agro-food sector in Mexico. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 59.

5. Romero-Hidalgo, J. A., Isiordia-Lachica, P. C., Valenzuela, A., & others. (2021). Knowledge and innovation management model in the organizational environment. Information, 12(6), 225.

Prof. Eui-chan Jeon | Engineering | Research Excellence Award

Prof. Eui-chan Jeon | Engineering | Research Excellence Award

Professor | Sejong University | South Korea

Prof. Eui-chan Jeon is a distinguished scholar whose extensive contributions to Engineering and environmental science have positioned him as a leading global authority in climate change mitigation, atmospheric emissions, and sustainable policy development. With a long-standing career marked by influential leadership roles, Prof. Jeon has advanced national and international frameworks through his work with major climate organizations, including key positions related to the IPCC, national carbon-neutrality committees, and major environmental research councils. His expertise spans the Engineering dimensions of greenhouse gas inventories, air-pollution management, emission-factor development, and short-lived climate forcers, and he has consistently shaped policies and methodologies that guide both scientific communities and governmental bodies. His Engineering-driven research portfolio encompasses more than a hundred documents, demonstrating impactful collaborations across academia, industry, and government institutions, while his applied investigations into ammonia emissions, particulate-matter sources, and industrial greenhouse-gas abatement technologies have significantly strengthened environmental decision-making. Prof. Jeon’s work in Engineering has also contributed to advanced modeling systems, emission-characterization frameworks, and mitigation strategies utilized across sectors such as agriculture, waste management, semiconductor manufacturing, and energy industries. His numerous authored and co-authored publications reflect a sustained commitment to Engineering innovation, methodological rigor, and interdisciplinary problem-solving, offering solutions that translate complex scientific insights into practical societal benefits. Prof. Jeon’s Engineering achievements extend to textbook authorship, national consulting, and international project leadership, establishing him as a pivotal figure whose research reshapes climate governance and emission-management standards. His reliable scientific output, strong Engineering foundation, and broad collaborative networks continue to influence sustainable-development pathways and evidence-based environmental reforms. This professional summary is supported by his Scopus profile of 2,082 Citations, 110 Documents, and a 22 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Effects of Plasma Power on By-Product Gas Formation from CHF₃ and CH₂F₂ Process Gases in Semiconductor Etching Processes. (2025). Applied Sciences Switzerland.

2. Understanding the correlation between the structural and photoluminescent properties of Ca₃(PO₄)₂:Eu³⁺, M⁺ (M⁺ = Li⁺, Na⁺, K⁺) phosphors. (2025). Ceramics International.

3. Thermoelectric properties of SiC nanoparticle-dispersed Bi₁.₉₂₅Ba₀.₀₇₅Sr₂Co₂Oy. (2025). Journal of Alloys and Compounds.

4. A study on the application of an estimated ammonia emission factor reflecting the operating characteristics of open laying hen houses in Korea. (2025). Atmosphere.

5. The impact of plasma intensity on the unused rate in semiconductor manufacturing: Comparative analysis across intensity ranges from 30 to 3000. (2025). Applied Sciences Switzerland.

Dr. Jagadish | Engineering | Best Researcher Award

Dr. Jagadish | Engineering | Best Researcher Award

Assistant Professor | Indian Statistical Institute, Bengaluru Centre | India

Dr. Jagadish is a distinguished researcher and Assistant Professor at the Indian Statistical Institute, Bangalore Centre, known for his influential contributions in Engineering fields encompassing Industrial Engineering, Production Engineering, and Mechanical Engineering. His academic and research accomplishments reflect a deep commitment to advancing Engineering principles through innovation, optimization, and sustainable development. With a strong foundation in Engineering optimization techniques, Engineering management, and Engineering modeling, Dr. Jagadish has established a reputation for excellence in multidisciplinary Engineering research. He has published 52 documents and accumulated 853 citations, achieving an h-index of 15 on Scopus, underscoring the impact and visibility of his scholarly work. A prolific author, Dr. Jagadish has contributed significantly to high-impact international journals and has authored and co-authored numerous Engineering books and book chapters published by leading academic publishers such as Springer, IGI Global, and Elsevier. His Engineering research spans optimization in green manufacturing, additive manufacturing, sustainable composites, and decision-making methods in production systems. He has also collaborated extensively with academic and industrial partners across multiple Engineering disciplines, bridging theoretical analysis with practical applications. His Engineering consultancy and project leadership demonstrate a strong connection between academic research and industrial implementation, particularly in areas such as quality management, Six Sigma applications, and process optimization. Dr. Jagadish’s leadership in Engineering training programs, conferences, and applied research projects has contributed greatly to capacity building and knowledge transfer in the Engineering community. His research integrates computational methods, experimental design, and sustainable approaches, reflecting the evolving role of Engineering in addressing environmental and industrial challenges. Through his consistent scholarly excellence and dedication to innovation, Dr. Jagadish continues to advance the frontiers of modern Engineering, contributing meaningfully to both academia and society.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Performance Analysis and Optimization of Different Electrode Materials and Dielectric Fluids on Machining of High Carbon High Chromium Steel in Electrical Discharge Machining. (2022). Proceedings of the National Academy of Sciences India Section A: Physical Sciences.

2. Evaluation of Machining Properties of Short Bamboo Fiber-Based Green Composites Using CNC Drilling Process. (Conference Paper).

3. Performance Evaluation of Sand Coated Absorber Based Solar Air Collector. (2021). Journal of Building Engineering.

4. Energy, Exergy, and Environmental (3E) Analyses of Reverse and Cross-Corrugated Trapezoidal Solar Air Collectors: An Experimental Study. (2021). Journal of Building Engineering.

5. A Soft Computing-Based Study on WEDM Optimization in Processing Inconel 625. (2021). Neural Computing and Applications.

Dr. Temitope Adefarati | Engineering | Best Researcher Award

Dr. Temitope Adefarati | Engineering | Best Researcher Award

Post Doctoral Fellowship | University of Johannesburg | South Africa

Dr. Temitope Adefarati is a distinguished Engineering scholar whose expertise in Electrical and Electronic Engineering has made notable contributions to renewable energy, power systems, and smart grid technology. He holds advanced Engineering degrees from prestigious universities, including a Ph.D. in Electrical Engineering, and has accumulated extensive experience in Engineering education, research, and industry. As an Engineering academic and researcher, he has served as an Associate Professor and Postdoctoral Fellow, contributing to Engineering curriculum development and the supervision of numerous postgraduate Engineering theses. His Engineering research focuses on optimizing renewable energy systems, distributed power generation, and sustainable energy integration. Dr. Adefarati’s Engineering excellence has been recognized through inclusion in the World’s Top 2% Scientists list for consecutive years and through his active role as an editorial board member of leading Engineering journals such as Frontiers in Smart Grids and International Journal of Energy Research. His Engineering research skills encompass power system reliability analysis, grid-connected PV optimization, and hybrid energy system simulation. With a prolific Engineering publication record in top-tier journals like Applied Energy, he has advanced the understanding of energy management and sustainable power systems. Dr. Adefarati’s Engineering commitment extends beyond academia through consultancy and professional affiliations, including COREN and the South African Institute of Electrical Engineers. His Engineering career demonstrates innovation, leadership, and dedication to advancing global energy solutions. Google Scholar profile of 2885 Citations, 31 i10 index, 22 h-index.

Profiles: ORCID | Google Scholar

Featured Publications

1. Adefarati, T., & Bansal, R. C. (2016). Integration of renewable distributed generators into the distribution system: A review. IET Renewable Power Generation, 10(7), 873–884.

2. Adefarati, T., & Bansal, R. C. (2019). Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources. Applied Energy, 236, 1089–1114.

3. Adefarati, T., & Bansal, R. C. (2017). Reliability assessment of distribution system with the integration of renewable distributed generation. Applied Energy, 185, 158–171.

4. Adefarati, T., & Bansal, R. C. (2017). Reliability and economic assessment of a microgrid power system with the integration of renewable energy resources. Applied Energy, 206, 911–933.

5. Adefarati, T., Bansal, R. C., & Just, J. J. (2017). Reliability and economic evaluation of a microgrid power system. Energy Proceedings, 142, 43–48.

Otilia Pitulac | Engineering | Best Researcher Award

Ms. Otilia Pitulac | Engineering | Best Researcher Award

Teaching Assistant | Technical University Gheorghe Asachi Iasi | Romania

Ms. Otilia Pitulac is an emerging scholar in the field of Environmental Engineering, recognized for her growing expertise and dedication to sustainability-driven Engineering innovations. She currently serves as a Teaching Assistant at the “Gheorghe Asachi” Technical University of Iași, where she contributes to academic and research excellence in hydrotechnics, geodesy, and environmental Engineering. Her academic journey includes a PhD in Environmental Engineering, a Master’s in Geomatics and Cartography, and a Bachelor’s in Geography, reflecting a strong foundation in both theoretical and applied Engineering disciplines. Ms. Pitulac’s research interests lie in environmental management, green city development, climate resilience, and sustainable Engineering practices. Her work emphasizes innovative approaches to soil conservation, resource optimization, and urban ecological balance within modern Engineering systems. Throughout her academic and professional experience, she has demonstrated Engineering skills in GIS analysis, project coordination, sustainable soil management, and environmental modeling. Her Engineering achievements are complemented by strong teamwork and communication abilities, essential for collaborative research environments. Ms. Pitulac has been actively engaged in guiding students and supporting Engineering research projects focused on sustainability and urban innovation. She has shown excellence in applying Engineering principles to address real-world environmental challenges, contributing meaningfully to the field’s evolution. Through continuous learning, practical engagement, and technical proficiency, Ms. Otilia Pitulac exemplifies the new generation of researchers shaping the future of sustainable Engineering, demonstrating an unwavering commitment to innovation, academic integrity, and interdisciplinary advancement.

Profile: ORCID

Featured Publication

1. Pitulac, O., Chirilă, C., Stătescu, F., & Marcoie, N. (2025). GIS-based assessment of photovoltaic and green roof potential in Iași, Romania. Applied Sciences, 15(19), 10786.

Dr. Deepakkumar R | Engineering | Best Researcher Award

Dr. Deepakkumar R | Engineering | Best Researcher Award

Assistant Professor | Vellore Institute of Technology | India

Dr. Deepakkumar R is a distinguished Engineering academician and researcher with expertise in Computational Fluid Dynamics, Mechanical Engineering, and Thermal Engineering. His Engineering career reflects deep engagement with teaching, research, and innovation in advanced Engineering systems such as heat exchangers, solar air heaters, hydrogen storage, and fuel cells. He has contributed significantly to Engineering research through his studies on vortex shedding, phase change materials, and multiphase flow analysis. His professional experience includes serving at leading Engineering institutions such as VIT Vellore, SRM Institute of Science and Technology, NIT Andhra Pradesh, and IIITDM Kancheepuram, where he guided numerous Engineering projects and doctoral candidates. His Engineering education spans from a Bachelor’s in Mechanical Engineering to a Ph.D. in Mechanical Engineering from IIITDM Kancheepuram, emphasizing Computational Engineering and simulation of fluid flows. Dr. Deepakkumar’s research skills include expertise in CFD tools like ANSYS Fluent, CATIA, Tecplot, and MATLAB, combined with experimental proficiency in wind and water tunnel analysis. His contributions to Engineering education and innovation have been recognized through multiple awards, including the “Outstanding Research Award” and “Best Research Paper Award,” underlining his excellence in Engineering research and pedagogy. His innovative work also extends to design registration in heat exchanger technology, showcasing his Engineering creativity and applied problem-solving capability. Overall, Dr. Deepakkumar R exemplifies the integration of Engineering research, teaching, and technology-driven innovation, continuously contributing to sustainable and renewable energy systems within the broader Engineering community. His Scopus profile of 184 Citations, 22 Documents, 7 h-index.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. Deepakkumar, R., & Jayavel, S. (2017). Air side performance of finned-tube heat exchanger with combination of circular and elliptical tubes. Applied Thermal Engineering, 119, 360–372.

2. Deepakkumar, R., Jayavel, S., & Tiwari, S. (2017). Cross flow past circular cylinder with waviness in confining walls near the cylinder. Journal of Applied Fluid Mechanics, 10(1), 183–197.

3. Ramalingam, S., Babu, D., Deepakkumar, R., & Malinee, S. (2022). Effect of Moringa oleifera biodiesel–diesel–carbon black water emulsion blends in diesel engine characteristics. Energy Reports, 8, 9598–9609.

4. Deepakkumar, R., & Jayavel, S. (2018). Effect of local waviness in confining walls and its amplitude on vortex shedding control of the flow past a circular cylinder. Ocean Engineering, 156, 208–216.

5. Ramalingam, S., Babu, D., Santhoshkumar, A., Deepakkumar, R., & Ravikanth, D. (2022). Impact of exhaust gas recirculation and split injection strategy combustion behavior on premixed charge compression ignition engine fuelled with moringa oleifera methyl ester. Fuel, 319, 123702.

Prof. Wenlong Song | Engineering | Best Scholar Award

Prof. Wenlong Song | Engineering | Best Scholar Award

Associate Professor | Jining University | China

Prof. Wenlong Song, a distinguished figure in the field of Engineering, has made significant contributions to Mechanical Design, Manufacturing, and Automation. He earned his doctoral degree from Shandong University and serves as an Associate Professor and Graduate Supervisor at the School of Mechanical and Electrical Engineering, Jining University. His Engineering expertise focuses on efficient machining processes and advanced tool technology, where he has played a key role in leading multiple Engineering research initiatives. Prof. Song has successfully hosted several provincial, ministerial, and industrial Engineering projects, which have substantially advanced technological applications in precision machining and automation systems. His Engineering research has resulted in more than fifty academic publications and over forty authorized invention patents, reflecting his strong innovation capabilities and leadership in Engineering development. Recognized for his excellence, he has received multiple municipal and higher-level awards for his Engineering achievements. Prof. Song’s Engineering research skills encompass precision design, material optimization, process modeling, and manufacturing automation. His continued dedication to Engineering education and research demonstrates his commitment to nurturing the next generation of Engineering scholars while expanding the boundaries of modern mechanical systems. Through his extensive Engineering background and innovative approach, Prof. Wenlong Song stands out as a leading expert whose work continues to impact the Engineering community globally. 346 Citations, 33 Documents, 11 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. (2025). Analytical and experimental investigation of vibration response for the cracked fluid-filled thin cylindrical shell under transport condition. Applied Mathematical Modelling.

2. (2025). Friction behavior of molybdenum disulfide/polytetrafluoroethylene-coated cemented carbide fabricated with a spray technique in dry friction conditions. Coatings.

3. (2024). Fabrication and tribology properties of PTFE-coated cemented carbide under dry friction conditions. Lubricants.

Wang Yuqi | Engineering | Best Researcher Award

Mr. Wang Yuqi | Engineering | Best Researcher Award

postgraduate | Harbin Engineering University | China

Mr. Wang Yuqi is an accomplished researcher from Harbin Engineering University with a strong foundation in Mechanical and Electronic Engineering and Marine Robot systems, excelling in the field of engineering through his work on advanced robotics and intelligent control systems. His academic journey includes a master’s focus on marine robotics and an undergraduate specialization in mechanical and electronic engineering, supported by numerous honors and scholarships that highlight his academic excellence. His professional experience spans leading roles in engineering projects, including the design and optimization of deep-sea exploration ROV control systems, intelligent unmanned hovercraft, and sea cucumber robot technologies, where he applied cutting-edge engineering methodologies such as FreeRTOS-based scheduling, STM32 circuit design, FPGA communication protocols, and ROS data processing. He has further contributed as an intern at the National Deep Sea Base Management Center and Midea Group, where he advanced engineering solutions for marine exploration and motor control systems. His research interests lie in engineering design for underwater robotics, intelligent control, sensor integration, and embedded systems, which have led to recognition in national and international competitions. Mr. Wang Yuqi’s engineering expertise is complemented by strong skills in programming (C/C++, MATLAB), simulation and design tools, communication protocols, and hardware debugging, making him a versatile and innovative researcher. His achievements in engineering, both academically and professionally, have earned him awards, leadership roles, and recognition for his contributions to innovation in robotics and intelligent systems, reflecting a promising career in engineering research and application. 13 Citations, 6 Documents, 3 h-index

Profiles: Scopus | ORCID

Featured Publications

1. Zhang, H., Sun, Y., Zhao, Y., Xie, Y., Li, X., Wang, Y., & Zhao, C. (2024). Corrosion and carburization of Ni<sub>3</sub>Al-based superalloys in high-temperature carbon dioxide. Materials and Corrosion.

2. Huang, Y., Wang, Y., Yu, S., Zhang, H., & Zhao, C. (2024). Hot deformation behavior and dynamic recrystallization mechanisms of a Mn-Cu damping alloy. Materials Today Communications.

3. Huang, Y., Wang, Y., Yu, S., Zhang, H., & Zhao, C. (2024). Hot deformation behavior and dynamic recrystallization mechanisms of a Mn-Cu damping alloy. SSRN.

4. Li, X., Yu, S., Huang, Y., Wang, Y., Zhang, H., & Zhao, C. (2024). Impact of secondary γ’ precipitate on the high-temperature creep properties of DD6 alloy. Metals and Materials International.

5. Huang, Y., Wang, Y., Yu, S., Zhao, C., Zhao, Y., & Zhang, H. (2024). Influence of aging heat treatment on microstructure and mechanical properties of a novel polycrystalline Ni3Al-based intermetallic alloy. SSRN.

Prof. Levent Trabzon | Engineering | Best Researcher Award

Prof. Levent Trabzon | Engineering | Best Researcher Award

Faculty Member | Istanbul Technical University | Turkey

Prof. Levent Trabzon is a distinguished academic in Engineering, serving as Professor at Istanbul Technical University and Director of the MEMS Research Center. With a Ph.D. in Engineering Science from Penn State University, along with advanced degrees in Material Science & Engineering, he has built a career at the forefront of mechanical and materials Engineering. His professional journey spans leadership roles such as founding director of nanotechnology centers, advisory positions in international Engineering institutions, and consultancy in emergency management. His research covers microfluidics, MEMS, NEMS, nanomaterials, biomaterials, thin film deposition, and innovation in Engineering systems, with active involvement in international collaborations and numerous funded projects. Recognized with multiple Performance Awards, Article Performance Awards, and international innovation prizes, his work has significantly advanced Engineering applications in energy, environment, healthcare, and manufacturing. His Engineering skills include nanotechnology design, microsystem modeling, thin film fabrication, advanced materials processing, and innovation management. A prolific researcher with over a hundred documents in leading Engineering journals and conferences, his impact is reflected in patents, invited talks, and global recognition. Prof. Levent Trabzon continues to push the boundaries of Engineering through teaching, mentoring, and pioneering projects that integrate cutting-edge technologies for societal benefit. 1,422 Citations by 1,301 documents, 100 Documents, 19 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. Benzait, Z., & Trabzon, L. (2018). A review of recent research on materials used in polymer–matrix composites for body armor application. Journal of Composite Materials, 52(23), 3241–3263.

2. Saleem, H., Trabzon, L., Kılıç, A., & Zaidi, S. (2020). Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination, 478, 114178.

3. Ramazanoglu, M., Lutz, R., Rusche, P., Trabzon, L., Kose, G. T., Prechtl, C., & other authors. (2013). Bone response to biomimetic implants delivering BMP-2 and VEGF: An immunohistochemical study. Journal of Cranio-Maxillofacial Surgery, 41(8), 826–835.

4. Wang, J., Yang, Y., Wang, Y., Dong, S., Cheng, L., Li, Y., Wang, Z., Trabzon, L., & other authors. (2022). Working aqueous Zn metal batteries at 100 °C. ACS Nano, 16(10), 15770–15778.

5. Benzait, Z., Chen, P., & Trabzon, L. (2021). Enhanced synthesis method of graphene oxide. Nanoscale Advances, 3(1), 223–230.