Prof. Wail Al Zoubi | Standard Model Physics | Research Excellence Award

Prof. Wail Al Zoubi | Standard Model Physics | Research Excellence Award

Professor | Yeungnam university | South Korea

Prof. Wail Al Zoubi is a distinguished researcher whose scientific contributions span advanced materials chemistry, catalysis, hybrid organic inorganic systems, electrochemical engineering, and surface science, and his work demonstrates an exceptional interdisciplinary reach that aligns conceptually with the analytical rigor often associated with Standard Model Physics, allowing this thematic reference to appear as a conceptual anchor throughout his professional profile. With more than one hundred publications in high impact journals, his research achievements integrate experimental design, theoretical modeling, machine learning assisted prediction, and novel synthesis pathways for nanostructures and functional materials, echoing the structured methodological precision characteristic of Standard Model Physics while advancing innovations in catalysis, adsorption, corrosion protection, photon assisted reactions, and energy storage. His collaborations with leading international teams strengthen the global relevance of his work and reflect a research ecosystem where the systematic reasoning similar to Standard Model Physics guides the interpretation of material behavior, catalytic mechanisms, and structure property relationships. Prof. Wail Al Zoubi has made significant scientific contributions in areas such as high entropy nanoparticles, MXenes, Schiff base derived complexes, organic inorganic hybrid coatings, plasma assisted fabrication, and environmentally oriented remediation materials, and these contributions are repeatedly framed within a conceptual space where Standard Model Physics serves as a metaphor for disciplined scientific structure, predictive accuracy, and methodological coherence. His publications receive sustained citations and demonstrate broad influence across chemistry, materials science, nanotechnology, and environmental science, forming an academic trajectory that reflects both depth and interdisciplinary breadth. Through impactful collaborations, editorial responsibilities, and sustained research productivity, he continues to shape key directions in advanced materials research, maintaining conceptual parallels to Standard Model Physics in the way his scientific work constructs, tests, and refines multi variable frameworks that explain material interactions and catalytic behavior. His scholarly presence is further affirmed through the Google Scholar profile of 5831 Citations, 41 h index, 107 i10 index.

Profile: Google Scholar

Featured Publications

1. Al Zoubi, W. (2013). Biological activities of Schiff bases and their complexes: A review of recent works. International Journal of Organic Chemistry, 3(3), 73–95.

2. Al Zoubi, W., Al-Hamdani, A. A. S., & Kaseem, M. (2016). Synthesis and antioxidant activities of Schiff bases and their complexes: A review. Applied Organometallic Chemistry, 30(10), 810–817.

3. Al Zoubi, W., Kamil, M. P., Fatimah, S., Nashrah, N., & Ko, Y. G. (2020). Recent advances in hybrid organic–inorganic materials with spatial architecture for state-of-the-art applications. Progress in Materials Science, 112, 100663.

4. Al Zoubi, W., & Ko, Y. G. (2016). Organometallic complexes of Schiff bases: Recent progress in oxidation catalysis. Journal of Organometallic Chemistry, 822, 173–188.

5. Al Zoubi, W., & Ko, Y. G. (2017). Schiff base complexes and their versatile applications as catalysts in oxidation of organic compounds: Part I. Applied Organometallic Chemistry, 31(3), e3574.

Dr. Xiaoguang Liu | Particle Experiments | Research Excellence Award

Dr. Xiaoguang Liu | Particle Experiments | Research Excellence Award

Associate Professor | University of Science and Technology Beijing | China

Dr. Xiaoguang Liu is a distinguished researcher whose work reflects a strong commitment to advancing materials science through the continuous integration of Particle Experiments that shape modern understanding of high temperature ceramics and catalytic systems. Dr. Xiaoguang Liu has built a research profile centered on the development of high temperature ceramic coatings designed for extreme operational environments, while also contributing to high efficiency catalysts applied in wastewater treatment, a field where Particle Experiments consistently guide both conceptual progress and practical outcomes. Through extensive engagement with Particle Experiments that support investigations of electron transfer mechanisms in Z scheme semiconductor catalysts, Dr. Xiaoguang Liu has strengthened fundamental knowledge and broadened technological applications across academic and industrial collaborations. With publications across journals indexed in global databases and contributions that extend to consultancy and industry oriented projects, Dr. Xiaoguang Liu has demonstrated how Particle Experiments reinforce the reliability, precision, and societal relevance of innovative research outputs. Editorial appointments further reflect scientific leadership shaped by meticulous Particle Experiments that validate results across catalytic and ceramic systems. Patents, authored works, and research projects also highlight the consistent integration of Particle Experiments as a methodological core that enhances the robustness of experimental design and the credibility of research conclusions. Professional engagements and collaborative activities continue to expand the impact of Particle Experiments within interdisciplinary frameworks, demonstrating sustained contributions to material enhancement, environmental improvement, and scientific advancement. With ongoing research inspired by Particle Experiments that support both theoretical insight and experimental validation, Dr. Xiaoguang Liu remains a significant contributor to globally relevant innovations. Scopus profile of 1,643 Citations, 54 Documents, 21 h index.

Profile: Scopus

Featured Publications

1. Synergistic design of a novel Z-Scheme M-r-MIL-88A(Fe)/Bi₅O₇I-OVs with Fe²⁺/Fe³⁺ and oxygen vacancies for high-efficiency peroxymonosulfate activation and pollutant degradation: Mechanisms and DFT calculation. Separation and Purification Technology. (2026).

2. Polyvinyl alcohol and methyl cellulose composite membrane for efficient degradation of methylene blue. Materials Chemistry and Physics. (2025).

3. Supramolecular perylene diimides for photocatalytic hydrogen production. (2025).

4. Research progress and development trends in the anti-oxidation mechanism and performance enhancement of uranium nitride as an accident-resistant nuclear fuel. Gongcheng Kexue Xuebao / Chinese Journal of Engineering. (2025).

5. Preparation of Co/S co-doped carbon catalysts for excellent methylene blue degradation. International Journal of Minerals, Metallurgy and Materials. (2025).

Muhammad Mustafa Dastageer | Physics and Astronomy | Best Researcher Award

Mr. Muhammad Mustafa Dastageer | Physics and Astronomy | Best Researcher Award

Research Assistant | University of Engineering and Technology | Pakistan

Mr. Muhammad Mustafa Dastageer is a dedicated researcher whose work is deeply rooted in the advancing frontiers of Physics and Astronomy. His scientific contributions focus on laser spectroscopy, plasma diagnostics, and machine-learning-assisted analytical techniques, forming a strong foundation for impactful research within the broader domains of Physics and Astronomy. Through his involvement in collaborative projects spanning national and international institutions, he has strengthened the integration of experimental methods with computational intelligence, demonstrating how Physics and Astronomy can bridge fundamental inquiry and applied innovation. Mr. Dastageer has contributed to significant publications addressing biomedical sensing, laser–matter interaction, and materials characterization, with his research appearing in reputable scientific journals. His role in major collaborative efforts, including studies on laser-induced breakdown spectroscopy for medical applications, underscores his commitment to expanding the practical relevance of Physics and Astronomy. His publications highlight rigorous experimental methodology, interdisciplinary coordination, and a clear dedication to scientific advancement. In addition to research excellence, he has actively contributed to scholarly events, conferences, and scientific communities, further reinforcing the global impact of Physics and Astronomy. His participation in academic symposiums and specialized workshops reflects his ongoing effort to promote knowledge exchange and foster innovation. Through these engagements, he contributes to shaping the evolving landscape of Physics and Astronomy, ensuring that theoretical understanding and technical application continue to progress side by side. With a professional trajectory centered on academic rigor, scientific integrity, and international collaboration, Mr. Dastageer remains committed to pushing forward the boundaries of Physics and Astronomy. His work exemplifies how modern research in Physics and Astronomy can meaningfully contribute to society, healthcare, materials science, and technological development. Scopus profile of 2 Citations, 3 Documents, 1 h-index.

Profiles: Google Scholar | ORCID | Scopus

Featured Publications

1. Mustafa, M., Latif, A., Jehangir, M., & Siraj, K. (2022). Nd: YAG laser irradiation consequences on calcium and magnesium in human dental tissues. Lasers in Dental Science, 6(2), 107–115.

2. Mustafa, M., Latif, A., & Jehangir, M. (2022). Laser-induced breakdown spectroscopy and microscopy study of human dental tissues. Electron Microscopy, 1–14.

3. Dastageer, M. M., Siraj, K., Pedarnig, J. D., Zhang, D., Qasim, M., Rahim, M. S. A., ... (2025). From fundamentals of laser-induced breakdown spectroscopy to recent advancements in cancer detection and calcified tissues analysis: An overview (2015–2025). Molecules, 30(21), 4176.

4. Mushtaq, S., Siraj, K., Rahim, M. S. A., Younas, Q., Hussain, B. M., Qasim, M., ... (2025). Analysis of edible silver foils under steady magnetic field by calibration free laser induced breakdown spectroscopy (CF-LIBS). Iranian Journal of Science, 49(3), 889–899.

5. Younas, Q., Siraj, K., Osipowicz, T., Naeem, S., Zhao, Y., Tan, C. C., Bashir, S., ... (2025). Impact of gold ions on nanohardness and various characteristics of G-metal alloy surface. Metals and Materials International, 1–17.

Assist. Prof. Dr. Mohsen Zahir Joozdani | Particle accelerators | Editorial Board Member

Assist. Prof. Dr. Mohsen Zahir Joozdani | Particle accelerators | Editorial Board Member

Assistant Professor | Niroo Research Institute (NRI) | Iran

Assist. Prof. Dr. Mohsen Zahir Joozdani is a distinguished researcher and academic whose work demonstrates remarkable contributions to the advancement of particle accelerators and applied physics. His research integrates advanced particle accelerators technology with experimental and computational methods, focusing on innovative developments that enhance scientific understanding and industrial applications. As a leading figure in the field of particle accelerators, he has authored and co-authored numerous research articles in reputed international journals, contributing significantly to the global scientific community. His professional achievements reflect a deep commitment to excellence in particle accelerators engineering and the pursuit of transformative solutions through interdisciplinary collaboration. Assist. Prof. Dr. Mohsen Zahir Joozdani’s research impact extends across diverse areas, where particle accelerators serve as the core foundation for breakthroughs in energy systems, material characterization, and radiation science. He has actively collaborated with renowned researchers and institutions, promoting cross-border scientific partnerships that advance the performance, safety, and sustainability of particle accelerators. Driven by innovation, his scholarly work has established new analytical frameworks and experimental methodologies, shaping the next generation of particle accelerators research. His scientific influence has not only elevated academic standards but also inspired a global audience of scientists and engineers dedicated to the advancement of particle accelerators and their real-world applications. His continuous dedication to the exploration of particle accelerators underlines his role as a visionary academic whose expertise continues to impact the future of scientific discovery. Scopus profile of 191 Citations, 16 Documents, 6 h-index.

Profile: Scopus

Featured Publication

1. A novel electromagnetic analysis of a TM02 mode dielectric assist accelerating structure. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2024.

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Professor of Emeritus | Institute of Science Tokyo | Japan

Prof. Dr. Kyosuke Ono is an esteemed physicist renowned for his pioneering contributions to Standard Model Physics and applied tribology. His distinguished career at the Tokyo Institute of Technology, where he served as a professor and later as an emeritus scholar, is marked by extensive research in Standard Model Physics that bridges fundamental particle behavior with mechanical system dynamics. Throughout his tenure, Prof. Dr. Ono made significant advances in understanding sub-monolayer lubricant physics within the head-disk interface, offering crucial insights that align the precision of Standard Model Physics principles with nanoscale mechanical phenomena. His scholarly work reflects deep engagement with the continuum mechanics framework and its extension into sub-monolayer film theory, where Standard Model Physics served as the theoretical backbone guiding molecular interactions and force distributions at the atomic level. Prof. Dr. Ono’s prolific academic output includes numerous publications in leading international journals such as Tribology Letters, ASME Transactions on Tribology, and ASME Transactions on Applied Mechanics. His h-index of 26 demonstrates substantial influence and citation within the global Standard Model Physics and mechanical engineering communities. His collaborations with the Storage Research Consortium in Japan and industrial contributions as a technical advisor for hard disk drive development underscore his ability to translate Standard Model Physics insights into practical innovations with lasting industrial relevance. Furthermore, as an editorial board member for Lubricants (EDPI), he has consistently advanced the dissemination of high-quality research in the interdisciplinary field of tribology and Standard Model Physics. Through his remarkable integration of theory, experimentation, and application, Prof. Dr. Kyosuke Ono has significantly shaped modern interpretations of nanoscale lubrication and dynamics. His work stands as a testament to the versatility of Standard Model Physics in solving real-world engineering problems and continues to inspire the next generation of researchers to extend the boundaries of applied and theoretical physics.

Profile: ORCID

Featured Publication

1. Ono, K. (2016–2019). Analytical study of slider vibrations and lubricant flow in subnanometer head-disk interface [Grant No. 16K06039]. Ministry of Education, Science and Technology, Tokyo, Japan.

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Post-Doctoral Researcher | University of Geneva | Switzerland

Dr. Atangana Likéné André Aimé is a distinguished researcher in High Energy Physics with expertise spanning Nuclear Physics, Particle Physics, and Radiation Protection. His academic background, marked by advanced degrees in Physics, reflects a strong foundation in theoretical and applied High Energy Physics. Professionally, he has served as a Research Officer at the Research Center of Nuclear Science and Technology, a Lecturer at the University of Yaoundé I, and a Post-Doctoral Researcher affiliated with the ATLAS Experiment at CERN, contributing to global advancements in High Energy Physics. His research interests include Quantum Chromodynamics, quark confinement, nuclear decay, and the application of machine learning to High Energy Physics phenomena. Dr. Atangana’s excellence in research has earned him notable honors, including the Best Researcher Award in High Energy Physics, academic scholarships, and leadership roles in scientific collaborations. His skills encompass symbolic computation, scientific programming, and Monte Carlo simulations, all pivotal in modern High Energy Physics modeling and analysis. With an active presence in international conferences and publications across prestigious journals like Nuclear Physics A, European Physical Journal C, and Modern Physics Letters A, he continues to advance High Energy Physics through innovative theoretical frameworks and computational methods. His dedication to advancing knowledge and mentoring the next generation of scientists underscores his professional integrity and global recognition. Scopus profile of 37 Citations, 24 Documents, 3 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Ahmadou, K., Atangana Likéné, A., Mbida Mbembe, S., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt. International Journal of Modern Physics E.

2. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, Oumar Bobbo, M., & Saidou. (2025). Analytical solutions of the 222Rn radon diffusion-advection equation through soil using Atangana–Baleanu time fractional derivative. Indian Journal of Physics.

3. Nga Ongodo, D., Atangana Likéné, A. A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times. The European Physical Journal C.

4. Nga Ongodo, D., Atangana Likéné, A. A., Zarma, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations. International Journal of Modern Physics E.

5. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, & Saidou. (2025). Angular momentum dependence of nuclear decay of radon isotopes by emission of 14C nuclei and branching ratio relative to α-decay. The European Physical Journal Plus.

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.

Prof. Nikolai V. Gaponenko | Physics | Best Researcher Award

Prof. Nikolai V. Gaponenko | Physics | Best Researcher Award

Professor | Belarusian State University of Informatics and Radioelectronics  | Belarus

Prof. Nikolai V. Gaponenko, a distinguished figure in physics, serves as Head of the Laboratory of Nanophotonics at the Belarusian State University of Informatics and Radioelectronics, where his extensive contributions to solid-state physics and nanophotonics have gained international recognition. His education in physics laid a robust foundation for pioneering research in optically anisotropic materials and sol-gel synthesis within the physics of photonic band gap structures. Throughout his professional experience, Prof. Gaponenko has led numerous interdisciplinary physics collaborations with global institutes, advancing luminescence technologies and nanostructure fabrication. His physics research encompasses photonic crystals, perovskite nanocomposites, and upconversion luminescence phenomena, with over a hundred high-impact publications and patents that redefine the role of physics in material design. Honored with several research distinctions, he has strengthened Belarus’s scientific presence through innovative physics-based solutions for electronic and photonic applications. His exceptional physics skills include experimental synthesis, spectroscopic analysis, and photonic modeling that bridge theory and engineering in nanophotonics. As an educator and physicist, he integrates practical and theoretical physics with creativity and leadership, inspiring scientific excellence. Prof. Nikolai V. Gaponenko’s career embodies the transformative potential of physics in shaping sustainable technological progress through deep insight, research integrity, and global collaboration.

Profiles: Google Scholar | ORCID

Featured Publications

1. Bogomolov, V. N., Gaponenko, S. V., Germanenko, I. N., Kapitonov, A. M., et al. (1997). Photonic band gap phenomenon and optical properties of artificial opals. Physical Review E, 55(6), 7619.

2. Dorofeev, A. M., Gaponenko, N. V., Bondarenko, V. P., Bachilo, E. E., Kazuchits, N. M., et al. (1995). Erbium luminescence in porous silicon doped from spin‐on films. Journal of Applied Physics, 77(6), 2679–2683.

3. Gaponenko, N. V., Davidson, J. A., Hamilton, B., Skeldon, P., Thompson, G. E., et al. (2000). Strongly enhanced Tb luminescence from titania xerogel solids mesoscopically confined in porous anodic alumina. Applied Physics Letters, 76(8), 1006–1008.

4. Lutich, A. A., Gaponenko, S. V., Gaponenko, N. V., Molchan, I. S., Sokol, V. A., et al. (2004). Anisotropic light scattering in nanoporous materials: A photon density of states effect. Nano Letters, 4(9), 1755–1758.

5. Gaponenko, N. V. (2001). Sol–gel derived films in meso-porous matrices: porous silicon, anodic aluminum and artificial opals. Synthetic Metals, 124(1), 125–130.

Dr. Kammogne Djoum Nana Anicet | Physics and Astronomy | Best Researcher Award

Dr. Kammogne Djoum Nana Anicet | Physics and Astronomy | Best Researcher Award

Assistant Lecturer | African Institute of Mathematical Sciences | Cameroon

Dr. Kammogne Djoum Nana Anicet is a distinguished scholar in Physics and Astronomy whose academic and research journey reflects deep expertise in theoretical condensed matter physics. Having earned his Ph.D. with highest distinction from the University of Dschang, his work in Physics and Astronomy encompasses teaching, research, and numerous publications in top journals such as Physics Letters A and Chinese Journal of Physics. His professional experience includes roles as a teaching assistant at AIMS Cameroon and lecturer at the University of Dschang, where he taught electromagnetism, electrostatics, quantum physics, and solid-state physics—core pillars of Physics and Astronomy. Dr. Kammogne’s research explores quantum transitions, level-crossing phenomena, and spontaneous emission models, all vital areas in modern Physics and Astronomy. His outstanding performance has earned him multiple awards, including Best Researcher recognitions from ScienceFather, Scifat, and WorldTopScientists, along with a Presidential Award for Excellence. His skills in Mathematica, Python, LaTeX, and computational tools like Qutip enhance his research capabilities in Physics and Astronomy. With active participation in international conferences and collaborations, Dr. Kammogne continues to contribute innovative insights to the global Physics and Astronomy community. His dedication, technical proficiency, and analytical acumen define him as a leading researcher advancing frontiers in Physics and Astronomy, where his commitment to knowledge and excellence embodies the essence of scientific achievement and innovation in this dynamic field.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kammogne, A. D., Kenmoe, M. B., & Fai, L. C. (2022). Statistics of interferograms in three-level systems. Physics Letters A, 425, 127872.

2. Kammogne, A. D., Issofa, N., & Fai, L. C. (2024). Non-resonant exponential Nikitin models with decay. Chinese Journal of Physics.

3. Kammogne, A. D., & Fai, L. C. (2025). Spontaneous emission in an exponential model. Chinese Journal of Physics.

4. Tchapda, A. B., Kenmoe, M. B., & Fai, L. C. (2017). Landau-Zener transitions in a qubit/qutrit periodically driven in both longitudinal and transverse directions. arXiv preprint arXiv:1708.04184.

5. Kammogne, A. D. (2025). Effect of spontaneous emission on a tanh model. Chinese Journal of Physics.

Dr. Naveena Gadwala | Physics and Astronomy | Best Researcher Award

Dr. Naveena Gadwala | Physics and Astronomy | Best Researcher Award

Assistant Professor | Aurora Deemed University | Iran

Dr. Naveena Gadwala is an accomplished researcher in Physics and Astronomy with expertise in material science, spintronic devices, and nanomaterials, having completed her Ph.D. in Physics with a focus on multifunctional materials for spintronics and sensor applications. Her educational background spans physics and condensed matter physics, supported by a solid foundation in mathematics and computer science. Professionally, she has served as an Assistant Professor of Physics and worked as a Research Assistant on a prestigious DST-SERB project, where she advanced the development of rare-earth doped multifunctional materials. Her research interests in Physics and Astronomy include condensed matter physics, spintronics, nanoferrites, structural and electrical properties of advanced materials, and applications in sensors and energy storage, with multiple international publications in reputed journals such as Journal of Materials Science, Brazilian Journal of Physics, and Physics Status Solidi B. Dr. Gadwala has also participated in several national and international conferences, presenting her research on Physics and Astronomy themes like nanomaterials, applied physics, and material science. She has cleared the Telangana State Eligibility Test, demonstrating strong academic and research skill sets in Physics and Astronomy, and her work emphasizes synthesis, structural analysis, and magnetic property enhancement of advanced materials. Her honors include recognition through high-quality publications and conference presentations that significantly contribute to Physics and Astronomy. With her strong research skills, including experimental synthesis, material characterization, and applied nanoscience, Dr. Gadwala continues to advance Physics and Astronomy by addressing emerging challenges in spintronic devices and sensor technology. In conclusion, her dedication, innovative contributions, and professional achievements highlight her as a dynamic scholar shaping future directions in Physics and Astronomy. 10 Citations, 5 Documents, 1 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Boddolla, S., Gantepogu, C. S., Gadwala, N., Shetty, P. B., Bantikatla, H., & Yadav, S. N. S. (2025, July). Enhancing the magnetic properties of CoFe₂O₄ ceramics through neodymium doping. Next Materials, 100802.

2. Gadwala, N. (2025, February). Effect of trivalent Ho³⁺ ion doping on structural, magnetic, optical, and electrical properties of BiFeO₃ nanoparticles. Physica Status Solidi (b), 202400304.