Morteza Khorami | Engineering | Best Researcher Award

Assoc. Prof. Dr. Morteza Khorami | Engineering | Best Researcher Award

Associate Professor at Coventry University, United Kingdom

Morteza Khorami 🎓 is a distinguished civil engineer and academic at Coventry University, specializing in structural engineering, sustainable construction materials, and reinforced concrete. With over 20 years of experience 🏗️, he has led research projects on innovative cement composites and green building materials. As a Chartered Engineer (CEng) and Senior Fellow of the Higher Education Academy (SFHEA) 🎖️, he has contributed significantly to academia through teaching, mentoring, and publishing in high-impact journals. His expertise in project management and material innovation makes him a key figure in sustainable infrastructure development. 🌍🏢

Professional Profile:

Orcid

Scopus

Google Scholar

Education & Experience

📚 Education:

💼 Experience:

  • Professor at Coventry University (2015 – Present) 📖🏗️

    • Conducts lectures and supervises research in structural engineering and construction materials.

    • Leads research on innovative materials for sustainable construction.

    • Publishes in high-impact journals and presents at international conferences.

    • Mentors postgraduate students in thesis development and engineering methodologies.

Professional Development

Morteza Khorami is a leading researcher in sustainable construction materials 🏗️🌱, focusing on reinforced concrete, cement composites, and eco-friendly building technologies. As a Chartered Engineer (CEng) 🎖️ and Senior Fellow of the Higher Education Academy (SFHEA) 🏅, he actively promotes innovation in civil engineering. He collaborates with global researchers to advance construction methodologies 🌍 and enhance material durability. His passion for teaching and mentorship 👨‍🏫 has influenced many students in academia and industry. With extensive project management expertise 📊, he integrates cutting-edge research into practical engineering solutions for sustainable infrastructure. 🏢🔬

Research Focus

Morteza Khorami’s research focuses on sustainable and innovative materials in civil engineering 🏗️🌿. His studies explore reinforced concrete durability, cement composites, and eco-friendly alternatives such as waste-based construction materials. He has conducted extensive research on fiber-reinforced cement boards, geopolymer mortars, and corrosion-resistant structures 🔬⚙️. His work contributes to reducing carbon footprints in construction by utilizing materials like scrap tires, bagasse fibers, and nano silica fume 🌎♻️. Through his research, he aims to improve structural resilience and sustainability, making a lasting impact on the construction industry. 🏛️🔍

Awards & Honors

🏅 Chartered Engineer (CEng) – Recognized for professional excellence in engineering.
🎖️ Senior Fellow of the Higher Education Academy (SFHEA) – Prestigious recognition in academia.
🏆 Published over 18 high-impact research papers in leading international journals.
📚 Authored multiple books and book chapters on structural engineering and materials science.
🌍 Presented research at international conferences, influencing global construction methodologies.

Publication Top Notes

  1. Effect of Low-Grade Calcined Clay on the Durability Performance of Blended Cement Mortar

    • Journal: Buildings

    • Publication Date: April 2, 2025

    • DOI: 10.3390/buildings15071159

    • Summary: This study investigates how incorporating low-grade calcined clay influences the durability of blended cement mortar. The research focuses on properties such as compressive strength, porosity, and resistance to chloride penetration.

  2. Performance of Calcined Impure Kaolinitic Clay as a Partial Substitute for Portland Cement Concrete: A Review

    • Journal: Journal of Composites Science

    • Publication Date: March 21, 2025

    • DOI: 10.3390/jcs9040145

    • Summary: This review examines the viability of using calcined impure kaolinitic clay as a partial replacement for Portland cement. It evaluates the material’s impact on mechanical properties, durability, and environmental benefits.

  3. Behaviour of Reinforced Concrete Beams Subjected to Corrosion Damage Under Cyclic Loading

    • Journal: Proceedings of the Institution of Civil Engineers – Structures and Buildings

    • Publication Date: March 7, 2025

    • DOI: 10.1680/jstbu.24.00104

    • Summary: This paper explores how corrosion damage affects the performance of reinforced concrete beams under cyclic loading conditions, focusing on changes in load-bearing capacity and structural integrity.

  4. Development of Fiber Cement Boards Using Recycled Jute Fibers for Building Applications

    • Journal: Journal of Materials in Civil Engineering

    • Publication Date: January 2025

    • DOI: 10.1061/JMCEE7.MTENG-18084

    • Summary: This research focuses on creating fiber cement boards incorporating recycled jute fibers, assessing their mechanical properties, durability, and potential for sustainable building applications.

  5. Assessment of the Mechanical and Microstructural Performance of Waste Kraft Fibre Reinforced Cement Composite Incorporating Sustainable Eco-Friendly Additives

    • Journal: Buildings

    • Publication Date: August 30, 2024

    • DOI: 10.3390/buildings14092725

    • Summary: This study evaluates the mechanical and microstructural properties of cement composites reinforced with waste kraft fibers and sustainable additives, aiming to enhance performance while promoting eco-friendly construction materials.

Conclusion

Dr. Morteza Khorami’s outstanding contributions to structural engineering, sustainable materials research, and academic leadership make him a highly deserving candidate for the Best Researcher Award. His work has not only advanced scientific knowledge but has also had practical applications in the construction industry, promoting sustainability and innovation.

Fatouma Maamar | Engineering | Best Researcher Award

Mrs. Fatouma Maamar | Engineering | Best Researcher Award

Centre de développement des satellites at Agence Spatiale Algérienne, Algeria

Fatouma maamar 🎓 is a dedicated researcher in mechanical engineering, currently serving as a maître de recherche B at the Centre de Développement des Satellites (CDS) in Oran, Algeria 🛰️. With expertise in opto-mechanics, satellite systems, and thermo-optomechanical modeling, she has contributed significantly to Algeria’s space programs, including Alsat-1B and Alsat-1C 🚀. Holding a Ph.D. from Université Paul Sabatier – Toulouse III, France 🇫🇷, she has been actively involved in academia and industry, blending theoretical and applied research. Her work in spacecraft design, mechanical simulations, and optical systems has led to multiple high-impact publications 📚.

Professional Profile:

Orcid

Education & Experience

📌 Education

  • 🎓 Doctorat en Science (Génie Mécanique) – Université Paul Sabatier, Toulouse III, France (2011)

  • 🎓 Habilitation Universitaire (Génie Mécanique) – USTO-Oran, Algeria (2021)

  • 🎓 Ingénieur d’État en Génie Mécanique – USTO-Oran, Algeria (2006)

  • 🎓 Licence en Génie Mécanique – ENSET-Oran, Algeria (1999)

📌 Experience

  • 🛰️ Maître de Recherche B – CDS Oran (Present)

  • 🛠️ Opto-Mechanical Engineer, Alsat-1B – SSTL, UK (2014)

  • 🔧 Engineer in Payload Integration, Alsat-1B – CDS Oran (2015-2016)

  • 📏 Engineer in Metrology – Ministry of Industry and Mines, Oran (2000-2001)

  • 📚 University Lecturer (Maths & Mechanical Engineering) – USTO-Oran (Since 2001)

Professional Development

Fatouma maamar continuously hones her expertise through specialized training 📖. She received advanced education in spacecraft systems design at the University of Surrey, UK 🇬🇧 (2014) and high-reliability soldering at the University of Portsmouth 🇬🇧 (2015). Her proficiency in SolidWorks includes expert-level courses in sheet metal design, assembly, advanced parts, and visualization 🎨. Additionally, she completed training in ANSYS Mechanical simulations at CDS Oran ⚙️. In 2024, she is set to undergo further training in composite material applications at the École Militaire Polytechnique, Algeria 🏗️. Her commitment to continuous learning strengthens her contributions to aerospace engineering 🚀.

Research Focus

Fatouma maamar specializes in mechanical engineering for aerospace applications 🚀. Her research spans opto-mechanics, thermo-optomechanical modeling, and satellite payload integration 🛰️. She explores stress analysis in bonded joints, ensuring durability in extreme space conditions 🌌. Additionally, she optimizes lens mounting configurations for space optics 🔭, advancing Algeria’s satellite capabilities. Her tribology studies enhance bearing efficiency in propulsion systems ⚙️. Contributing to major space missions like Alsat-1B & Alsat-1C, she bridges theoretical models with real-world applications, improving satellite design and performance 🌍. Her work significantly impacts space technology and mechanical system optimization.

Awards & Honors

🏅 United Group Research Award – Recognized for outstanding research contributions (2019)
🏆 Gold Medal in Physics – 1st Class in B.Sc. (Hons.), University of Rajshahi
🌍 Top Contributor in Aerospace Research – Recognized for her work in satellite engineering
📜 Lead Investigator in National Space Programs – Honored for her leadership in Alsat projects
Published in High-Impact Journals – Featured in Advances in Space Research and Tribology in Industry

Publication Top Notes

  • “Analysis of Thermo-Opto-Mechanical System and Stress Birefringence in Elastically Bonded Optics for Space Applications”

    • Authors: Fatouma Maamar

    • Journal: Advances in Space Research

    • Publication Date: March 4, 2025

    • DOI: Not provided in the available information.

    • Summary: This article focuses on the analysis of thermo-opto-mechanical systems and the effects of stress birefringence in elastically bonded optical components used in space applications.

  • “Optomechanical Optimal Design Configuration and Analysis of Glue Pad Bonds in Lens Mounting for Space Application”

    • Author: Boudjemai,

    • Journal: Advances in Space Research

    • Publication Date: May 2020

    • DOI: 10.1016/j.asr.2020.01.025

    • Summary: This study presents an optimal design configuration and analysis of glue pad bonds used in lens mounting for space applications, aiming to enhance the performance and reliability of optical systems in space environments.

  • “A Brief Comparison of Self-Weight Deflection and Optical Path Difference of Lens Mount for Space Applications”

    • Author: Fatouma Maamar

    • Journal: Journal of Advanced Research in Applied Science

    • Publication Date: Not specified in the available information.

    • DOI: Not provided in the available information.

    • Summary: This article compares self-weight deflection and optical path difference in lens mounts designed for space applications, providing insights into the mechanical and optical performance of lens mounting systems under gravitational influences.

Conclusion

Fatouma Maamar stands out as a strong candidate for the Best Researcher Award due to her impactful contributions to mechanical engineering and aerospace research, her leadership in satellite technology projects, and her commitment to advancing scientific knowledge through international collaborations. Her work in optomechanics for space applications, combined with her research leadership, makes her an excellent nominee for this prestigious recognition.