Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam | Engineering | Best Researcher Award

Prof. Hwa Yaw Tam at The Hong Kong Polytechnic University , Hong Kong

Prof. Hwa Yaw TAM 🎓🔬, IEEE Life Fellow and OPTICA Fellow, is a visionary in photonics and optical fibre sensing. Currently Chair Professor of Photonics at The Hong Kong Polytechnic University 🇭🇰, he has spearheaded groundbreaking innovations in fibre-optic sensor systems for transportation 🚄, energy ⚡, and medical 👂 applications. With over 800 publications 📚 and 20 patents 🔖, he stands as the second most cited expert in fibre-optic sensing, boasting an H-index of 73. His trailblazing contributions span continents, from Hong Kong’s MTR to the Netherlands and Australia 🌍. A laureate of the Berthold Leibinger Innovationspreis 🏆 and multiple Geneva Invention awards, Prof. Tam’s legacy bridges academia, industry, and public safety. His work has also spun off seven photonics companies 🚀. With unwavering passion and pioneering spirit, Prof. Tam continues to illuminate the future of smart sensing and laser technologies 🔭.

Professional Profile 

🎓 Education

Prof. Hwa Yaw TAM embarked on his academic voyage at The University of Manchester, UK 🇬🇧, earning both his B.Eng in 1985 and Ph.D. in 1989 🎓. His early educational foundations laid the groundwork for a lifelong commitment to photonics and optical engineering. Specializing in electrical and electronic engineering, his doctoral studies fused rigorous theory with hands-on research in laser systems and fibre technologies 🔍. This dual emphasis cultivated a mindset driven by innovation and precision. The UK academic environment, rich in historical scientific achievement, greatly influenced his research ethos 🌐. Prof. Tam’s education not only equipped him with cutting-edge technical knowledge but also instilled in him a vision to translate science into impactful, real-world applications. Today, that foundation continues to echo through his advanced fibre-optic sensor innovations 🔬, standing as a beacon for future generations of engineers and scientists 📘💡.

🏛️ Professional Experience

Prof. Tam’s professional journey spans academia and industry in equal brilliance 🌠. He began his research career at GEC-Marconi Ltd. (London) between 1989–1993, delving into erbium-doped fibre amplifiers and laser systems 💡. He then joined The Hong Kong Polytechnic University in 1993, rising through the ranks from Lecturer to Chair Professor of Photonics. He also served as Head of the Electrical Engineering Department and was the Founding Director of the Photonics Research Centre (2000–2022) 🏫. Presently, he is Associate Director at PolyU’s Photonics Research Institute, spearheading interdisciplinary innovations. Prof. Tam’s work transcends traditional academia—his team has launched seven start-ups, catalyzing photonics-based solutions globally 🚀. His leadership has shaped fibre-optic sensing systems for cities and industries across Asia, Europe, and Australia, turning theoretical breakthroughs into operational systems in railways 🚉, energy grids 🔋, and hospitals 🏥, positioning him as a pivotal force in global smart sensing networks 🌐.

🔬 Research Interest

Prof. Tam’s research orbits around specialty optical fibres tailored for real-world sensor applications 🔍. His core interests span the design and fabrication of advanced fibre-optic systems that serve as digital sentinels in complex infrastructures 🧠. From structural health monitoring (SHM) to real-time railway diagnostics, his innovations help prevent failures before they occur ⚠️. His pioneering optical fibre networks have monitored everything from high-speed trains 🚆 to smart escalators and even cochlear implants for medical precision 👂. By embedding fibre Bragg gratings (FBGs) into intelligent sensing webs, he’s revolutionized predictive maintenance across industries. His group’s work is particularly transformative in railway monitoring, with deployment success stories in Hong Kong, Singapore, and the Netherlands 🌍. Always ahead of the curve, Prof. Tam’s research fuses AI 🤖, photonic engineering, and real-time analytics to create a safer, more connected world through light 🌈 and precision sensing technologies 📈.

🏅 Awards and Honors

Prof. Tam’s achievements are globally celebrated 🏆. In 2025, he won the Special Prize and Gold Medal at Geneva’s Invention Expo for a smart cochlear implant 👂🌟. In 2024, he secured another Gold Medal for lithium-ion battery health monitoring via FBG sensors 🔋. Earlier, in 2022, his intelligent escalator monitoring system earned him yet another Geneva Gold Award 🥇. The Berthold Leibinger Innovationspreis in 2014, among the world’s highest laser tech honors, recognized his work in wavelength-tunable laser sensing for railways 🚄. His team also received the President’s Award for Knowledge Transfer in 2022 at PolyU for creating AI-enhanced optical fibre networks 🌐. Further accolades include a Best Paper finalist at IEEE SENSORS 2016 📃. Each honor underscores Prof. Tam’s deep impact on laser technology, smart sensing, and translational engineering. His consistent award-winning contributions reflect a perfect blend of scientific creativity, societal value, and engineering excellence 💼🔬.

📚 Publications Top Note 

  1. Title: Enhanced Quasi-Distributed Accelerometer Array Based on ϕ-OTDR and Ultraweak Fiber Bragg Grating
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: IEEE Sensors Journal
    Summary: Proposes an enhanced accelerometer array using phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and ultraweak fiber Bragg gratings for distributed vibration sensing, suitable for applications like structural health monitoring.


  1. Title: Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor
    Authors: , , , …
    Year: 2023
    Citations: 6
    Source: Sensors
    Summary: Describes a label-free biosensor using etched tilted fiber Bragg gratings to detect DNA without the need for fluorescent labels, enhancing sensitivity and simplicity in genetic diagnostics.


  1. Title: Recovery of a Highly Reflective Bragg Grating in DPDS-Doped Polymer Optical Fiber by Thermal Annealing
    Authors: , , , …
    Year: 2023
    Citations: 2
    Source: Optics Letters
    Summary: Demonstrates the recovery of degraded Bragg gratings in doped polymer optical fibers using thermal annealing, showing potential for longer lifespan and reusability in fiber-optic sensors.


  1. Title: Accident Risk Tensor-Specific Covariant Model for Railway Accident Risk Assessment and Prediction
    Authors: , , , …
    Year: 2023
    Citations: 8
    Source: Reliability Engineering and System Safety
    Summary: Introduces a tensor-based statistical model for accurately assessing and predicting accident risks in railway systems by incorporating covariant risk factors.


  1. Title: Polymeric Fiber Sensors for Insertion Forces and Trajectory Determination of Cochlear Implants in Hearing Preservation
    Authors: , , , …
    Year: 2023
    Citations: 10
    Source: Biosensors and Bioelectronics
    Summary: Presents polymeric fiber-optic sensors designed to measure insertion force and trajectory during cochlear implant surgeries, helping to preserve hearing by reducing inner ear trauma.


  1. Title: Miniature Two-Axis Accelerometer Based on Multicore Fiber for Pantograph-Catenary System
    Authors: , , , ,
    Year: 2023
    Citations: 8
    Source: IEEE Transactions on Instrumentation and Measurement
    Summary: Develops a compact fiber-based accelerometer capable of sensing in two axes, tailored for monitoring the dynamics of pantograph-catenary interactions in electric rail systems.


  1. Title: Ultraminiature Optical Fiber-Tip Directly-Printed Plasmonic Biosensors for Label-Free Biodetection
    Authors: , , , …
    Year: 2022
    Citations: 19
    Source: Biosensors and Bioelectronics
    Summary: Describes a highly miniaturized fiber-tip plasmonic biosensor fabricated via direct printing, enabling sensitive and label-free detection of biomolecules at the microscale.


  1. Title: Accelerated Pyro-Catalytic Hydrogen Production Enabled by Plasmonic Local Heating of Au on Pyroelectric BaTiO3 Nanoparticles
    Authors: , , , …
    Year: 2022
    Citations: 83
    Source: Nature Communications
    Summary: Reports a novel hydrogen production method using gold-decorated BaTiO₃ nanoparticles, where plasmonic heating enhances pyro-catalytic activity under mild conditions.


  1. Title: Biomechanical Assessment and Quantification of Femur Healing Process Using Fibre Bragg Grating Strain Sensors
    Authors: , , , …
    Year: 2022
    Citations: 5
    Source: Sensors and Actuators A: Physical
    Summary: Uses fiber Bragg grating strain sensors to monitor and quantify mechanical changes in the femur during bone healing, supporting better postoperative assessment.


  1. Title: Mach-Zehnder Interferometer Based Fiber-Optic Nitrate Sensor
    Authors: , , , ,
    Year: 2022
    Citations: Not listed
    Source: Optics Express
    Summary: Presents a Mach-Zehnder interferometer design using optical fiber for detecting nitrate concentrations in water, aiming at applications in environmental monitoring

🔚 Conclusion 

Prof. Hwa Yaw TAM is more than a scholar—he is a trailblazer in light-based sensing technologies 🌟. His career weaves together pioneering science, practical engineering, and impactful entrepreneurship 🌐. Through over 800 papers, 20 patents, and numerous awards, he has reshaped how the world monitors structural, environmental, and human conditions using optical fibres 💡. His real-world implementations—from monitoring city-wide railways to enabling hearing restoration—demonstrate how research can elevate safety, precision, and quality of life for millions 🌍. He continues to mentor future innovators and drive collaborative photonic research through his leadership roles at PolyU and the Photonics Research Institute. With vision, dedication, and humility, Prof. Tam stands as a guiding light for the global photonics community 🌠. His journey exemplifies how science, when paired with compassion and creativity, becomes a force for building a smarter, safer, and more sustainable world 🔗🌿.

Lijun Chen | Engineering | Best Researcher Award

Prof. Lijun Chen | Engineering | Best Researcher Award

Professor at Northeast Electric Power University, China

Professor Lijun Chen is a seasoned academic and applied researcher at Northeast Electric Power University, bringing over three decades of expertise in automation, thermophysical measurement, and power plant monitoring systems. 🚀 With early technical training at Fuji Electric (Japan) and a strong industrial foundation at Dalian Huaying High-Tech Co., he seamlessly bridges theory with real-world application. His scholarly portfolio boasts 50+ journal publications 📚 (with 20+ indexed by EI and others in SCI), and six national invention patents that reflect his innovation-driven mindset. ⚙️ He has led multiple national and provincial projects, combining academic research with industrial consulting to optimize thermal power systems. A Senior Member of the China Metrology Society, his dedication is evident through a career filled with impactful collaborations, cutting-edge research, and enduring contributions to the energy sector. 🔧 His work continues to empower sustainable and efficient energy technologies across China and beyond. 🌏

Professional Profile 

Scopus

🎓 Education

Professor Lijun Chen’s educational journey is deeply rooted in engineering excellence. 🌱 He enhanced his technical knowledge through automation testing training at Fuji Electric, Japan (1991–1992), where he gained exposure to international standards and modern industrial practices. This early international training laid the groundwork for a future in advanced automation and instrumentation. He continued sharpening his skills with hands-on industry experience before entering academia. 📐 His educational pursuits were not just theoretical but focused on practical solutions for real-world problems in power systems. His academic foundation, supplemented by immersive industrial exposure, uniquely positions him as a knowledge leader in thermophysical measurement and energy systems. 🔋 The fusion of global learning and domestic execution in his educational journey symbolizes his balanced and forward-thinking approach to engineering education and research. 📊

👨‍💼 Professional Experience

Professor Chen’s professional voyage is an exemplar of bridging industry with academia. 🏭 From 1995 to 1997, he worked at Dalian Huaying High-Tech Co., developing automation solutions for complex power systems. Following this, from 1997 to 2001, he continued innovating at the Institute of Electronic Engineering Technology, sharpening his expertise in electronic control. Since 2001, he has been a cornerstone of the School of Automation Engineering at Northeast Electric Power University. 🧑‍🏫 There, he has led or collaborated on numerous high-impact projects, integrating research with engineering applications. His leadership in thermal power plant control systems has shaped provincial-level R&D initiatives and academic–industry partnerships. 🧠 His work with national and horizontal industry projects exemplifies how academic insight can directly solve operational challenges in the energy sector. 🔌

🔬 Research Interest

Lijun Chen’s research is centered on cutting-edge thermal measurement and automation in power engineering. 🌡️ His core interests span thermophysical parameter estimation, combustion optimization, and defect detection in high-frequency electromagnetic equipment. 🔎 These focus areas have significant industrial value, particularly in enhancing the efficiency, safety, and reliability of thermal power plants. His work addresses critical challenges in energy management and environmental control, making his innovations especially relevant in the current era of carbon reduction and sustainable engineering. 🌍 Professor Chen’s ability to combine hardware innovation with control algorithms demonstrates his multi-disciplinary reach across automation, electronics, and thermodynamics. His projects often involve both modeling and experimental validation, ensuring practical applicability. 📊 His collaborations with institutes and enterprises are further proof of his commitment to solving industry-grade problems with scientifically sound solutions. ⚛️

🏅 Award and Honor

Throughout his illustrious career, Professor Chen has been recognized with multiple provincial science and technology awards, a testament to the real-world impact of his work. 🏆 His patents—six granted at the national level—underscore his creative contributions to the field of power system automation and thermal engineering. 📜 His consistent participation in government-funded and industry-sponsored projects not only highlights his technical capability but also his leadership in driving research innovation. He is a Senior Member of the China Metrology Society and plays a notable role in the Jilin Province Electrical Engineering Society, reflecting his influence in professional circles. 🤝 His efforts have significantly elevated the performance of thermal power systems, earning him peer recognition and respect. His honors are not just awards—they are reflections of decades of dedicated research, innovation, and service to the field. 🔧💡

📚 Publications Top Note 

1. Title: The Feasibility Study on Pulverized Coal Mass Concentration Measurement in Primary Air of Plant Using Fin Resonant Cavity Sensor
Authors: Hao Xu, Yiguang Yang, Lijun Chen, Hongbin Yu, Junwei Cao
Year: 2024
Type: Conference Paper
Source: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Citations: 0 (as of the latest data)
Summary:
This study explores the application of a fin resonant cavity sensor to measure the mass concentration of pulverized coal in the primary air system of power plants. The authors designed and experimentally validated a resonant cavity-based sensor for real-time and high-flow environment monitoring. Results indicate the method’s strong potential for improving combustion efficiency and operational safety in thermal power systems.


2. Title: Research on Finite-Time Consensus of Multi-Agent Systems
Authors: Lijun Chen, Yu Zhang, Yuping Li, Linlin Xia
Year: 2019
Type: Journal Article
Source: Journal of Information Processing Systems (JIPS)
DOI: 10.3745/JIPS.01.0039
Citations: 1 (confirmed from source journal; citation count may vary on other platforms)
Summary:
This paper proposes a novel consensus protocol that enables finite-time convergence in second-order multi-agent systems. By incorporating the gradient of a global cost function into the standard consensus model, the authors enhance coordination speed and robustness among agents. Theoretical analysis using Lyapunov functions, homogeneity theory, and graph theory supports the method’s effectiveness. Simulations demonstrate superior performance in leader–follower scenarios.

Conclusion 

In conclusion, Professor Lijun Chen exemplifies the model of a research-driven innovator and dedicated academic. 📘 With a career spanning research, teaching, consultancy, and invention, he has contributed immensely to the advancement of thermal power automation and measurement systems. His ability to transform theoretical concepts into tangible industrial solutions highlights his value as both a scholar and engineer. 🔬 His multi-patented technologies and SCI-indexed publications reflect a commitment to quality, while his work with industry partners showcases practical relevance. With unwavering focus and passion for thermodynamics, automation, and sustainability, Professor Chen continues to shape the future of smart thermal energy systems in China and beyond. 🌱 His legacy is one of bridging knowledge with innovation, inspiring a new generation of researchers and engineers. 🌟

Morteza Khorami | Engineering | Best Researcher Award

Assoc. Prof. Dr. Morteza Khorami | Engineering | Best Researcher Award

Associate Professor at Coventry University, United Kingdom

Morteza Khorami 🎓 is a distinguished civil engineer and academic at Coventry University, specializing in structural engineering, sustainable construction materials, and reinforced concrete. With over 20 years of experience 🏗️, he has led research projects on innovative cement composites and green building materials. As a Chartered Engineer (CEng) and Senior Fellow of the Higher Education Academy (SFHEA) 🎖️, he has contributed significantly to academia through teaching, mentoring, and publishing in high-impact journals. His expertise in project management and material innovation makes him a key figure in sustainable infrastructure development. 🌍🏢

Professional Profile:

Orcid

Scopus

Google Scholar

Education & Experience

📚 Education:

💼 Experience:

  • Professor at Coventry University (2015 – Present) 📖🏗️

    • Conducts lectures and supervises research in structural engineering and construction materials.

    • Leads research on innovative materials for sustainable construction.

    • Publishes in high-impact journals and presents at international conferences.

    • Mentors postgraduate students in thesis development and engineering methodologies.

Professional Development

Morteza Khorami is a leading researcher in sustainable construction materials 🏗️🌱, focusing on reinforced concrete, cement composites, and eco-friendly building technologies. As a Chartered Engineer (CEng) 🎖️ and Senior Fellow of the Higher Education Academy (SFHEA) 🏅, he actively promotes innovation in civil engineering. He collaborates with global researchers to advance construction methodologies 🌍 and enhance material durability. His passion for teaching and mentorship 👨‍🏫 has influenced many students in academia and industry. With extensive project management expertise 📊, he integrates cutting-edge research into practical engineering solutions for sustainable infrastructure. 🏢🔬

Research Focus

Morteza Khorami’s research focuses on sustainable and innovative materials in civil engineering 🏗️🌿. His studies explore reinforced concrete durability, cement composites, and eco-friendly alternatives such as waste-based construction materials. He has conducted extensive research on fiber-reinforced cement boards, geopolymer mortars, and corrosion-resistant structures 🔬⚙️. His work contributes to reducing carbon footprints in construction by utilizing materials like scrap tires, bagasse fibers, and nano silica fume 🌎♻️. Through his research, he aims to improve structural resilience and sustainability, making a lasting impact on the construction industry. 🏛️🔍

Awards & Honors

🏅 Chartered Engineer (CEng) – Recognized for professional excellence in engineering.
🎖️ Senior Fellow of the Higher Education Academy (SFHEA) – Prestigious recognition in academia.
🏆 Published over 18 high-impact research papers in leading international journals.
📚 Authored multiple books and book chapters on structural engineering and materials science.
🌍 Presented research at international conferences, influencing global construction methodologies.

Publication Top Notes

  1. Effect of Low-Grade Calcined Clay on the Durability Performance of Blended Cement Mortar

    • Journal: Buildings

    • Publication Date: April 2, 2025

    • DOI: 10.3390/buildings15071159

    • Summary: This study investigates how incorporating low-grade calcined clay influences the durability of blended cement mortar. The research focuses on properties such as compressive strength, porosity, and resistance to chloride penetration.

  2. Performance of Calcined Impure Kaolinitic Clay as a Partial Substitute for Portland Cement Concrete: A Review

    • Journal: Journal of Composites Science

    • Publication Date: March 21, 2025

    • DOI: 10.3390/jcs9040145

    • Summary: This review examines the viability of using calcined impure kaolinitic clay as a partial replacement for Portland cement. It evaluates the material’s impact on mechanical properties, durability, and environmental benefits.

  3. Behaviour of Reinforced Concrete Beams Subjected to Corrosion Damage Under Cyclic Loading

    • Journal: Proceedings of the Institution of Civil Engineers – Structures and Buildings

    • Publication Date: March 7, 2025

    • DOI: 10.1680/jstbu.24.00104

    • Summary: This paper explores how corrosion damage affects the performance of reinforced concrete beams under cyclic loading conditions, focusing on changes in load-bearing capacity and structural integrity.

  4. Development of Fiber Cement Boards Using Recycled Jute Fibers for Building Applications

    • Journal: Journal of Materials in Civil Engineering

    • Publication Date: January 2025

    • DOI: 10.1061/JMCEE7.MTENG-18084

    • Summary: This research focuses on creating fiber cement boards incorporating recycled jute fibers, assessing their mechanical properties, durability, and potential for sustainable building applications.

  5. Assessment of the Mechanical and Microstructural Performance of Waste Kraft Fibre Reinforced Cement Composite Incorporating Sustainable Eco-Friendly Additives

    • Journal: Buildings

    • Publication Date: August 30, 2024

    • DOI: 10.3390/buildings14092725

    • Summary: This study evaluates the mechanical and microstructural properties of cement composites reinforced with waste kraft fibers and sustainable additives, aiming to enhance performance while promoting eco-friendly construction materials.

Conclusion

Dr. Morteza Khorami’s outstanding contributions to structural engineering, sustainable materials research, and academic leadership make him a highly deserving candidate for the Best Researcher Award. His work has not only advanced scientific knowledge but has also had practical applications in the construction industry, promoting sustainability and innovation.

Mahmood Shakiba | Engineering | Best Researcher Award

Assist. Prof. Dr. Mahmood Shakiba | Engineering | Best Researcher Award

Faculty member at Ferdowsi University of Mashhad, Iran

Dr. mahmood shakiba 🇮🇷 is an assistant professor at Ferdowsi University of Mashhad, specializing in petroleum engineering with expertise in hydrocarbon reservoirs and enhanced oil recovery (EOR) 🛢️. He earned his Ph.D. from Amirkabir University of Technology (2020) 🎓, focusing on nano-assisted smart water for sand production control. With extensive experience in CO₂ and H₂ underground storage projects, reservoir characterization, and formation damage remediation, he has held key academic and industrial roles. As a researcher and educator, he has contributed significantly to petroleum engineering, guiding students and leading innovative studies in reservoir engineering and geomechanics 🔬📚.

Professional Profile

Scopus

Google Scholar

Education & Experience

Education 🎓

Ph.D. in Petroleum Engineering (Hydrocarbon Reservoirs), Amirkabir University of Technology (2016-2020)

  • Thesis: Nano-assisted smart water for sand production in unconsolidated sandstone reservoirs.

M.Sc. in Petroleum Engineering (Hydrocarbon Reservoirs), Shiraz University (2012-2014)

  • Thesis: Enhanced oil recovery & CO₂ storage via carbonated water injection.

B.Sc. in Petroleum Engineering (Reservoir Engineering), Shiraz University (2008-2012)

  • Thesis: Simulation of solution gas drive in fractured reservoirs.

Work Experience 🛠️

🔹 Assistant Professor – Ferdowsi University of Mashhad (2023-Present)
🔹 Project Supervisor – Underground CO₂ Storage (2023-Present)
🔹 Researcher – Underground H₂ Storage, RIPI (2023-Present)
🔹 Technical Manager – Upstream Oil Research Center, Sharif University (2020-2022)
🔹 Technical Supervisor – MAPSA Co., Tehran (2019-2020)
🔹 Industrial Consultant – MAPSA Co., Tehran (2019-2020)
🔹 Senior Lab Equipment Designer – MAPSA Co., Tehran (2018-2019)
🔹 Researcher – Advanced EOR Research Center, Shiraz University (2011-2014)

Professional Development 🌟

Dr. mahmood shakiba has significantly contributed to petroleum engineering through teaching, research, and industrial consulting 📖🔬. His expertise spans reservoir engineering, well testing, and gas reservoirs 🚀. At Ferdowsi University, he educates students on reservoir management and maintenance, while leading projects on underground CO₂ and H₂ storage. His industry experience includes technical supervision, reservoir characterization, and EOR techniques 🏭. Dr. shakiba has also played a key role in laboratory equipment design and geomechanical feasibility studies. His dedication to advancing sustainable energy storage and petroleum recovery has established him as a leader in the field 🌍💡.

Research Focus 🔬

Dr. shakiba’s research primarily focuses on enhanced oil recovery (EOR), underground storage of CO₂ and H₂, and reservoir geomechanics 🏗️. His experimental and simulation studies have explored innovative methods for improving oil recovery and mitigating environmental impact 🌱. He has investigated nano-assisted smart water flooding, formation damage remediation, and CO₂ sequestration to optimize hydrocarbon reservoir performance. His geological and geomechanical feasibility studies have contributed to safe underground hydrogen storage ⚡. His work advances sustainable energy solutions while improving oil and gas recovery efficiency for the future 🌍🔋.

Awards & Honors 🏆

🏅 Technical Leadership Award – Upstream Oil Research Center, Sharif University
🏅 Outstanding Research Contribution – Research Institute of Petroleum Industry (RIPI)
🏅 Best Thesis Award – Amirkabir University of Technology (2020)
🏅 Top Researcher Recognition – Shiraz University EOR Research Center
🏅 Best Instructor Award – Ferdowsi University of Mashhad (2023)

Publication Top Notes

  1. Investigation of oil recovery and CO₂ storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    • Journal of Petroleum Science and Engineering (2016)
    • Citations: 79
    • Examines how carbonated water injection (CWI) enhances oil recovery and CO₂ storage efficiency in carbonate reservoirs under secondary and tertiary injection scenarios.
  2. A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs

    • Journal of Molecular Liquids (2020)
    • Citations: 35
    • Investigates how smart water, combined with nanoparticles, helps mitigate sand production in weakly consolidated sandstone reservoirs while improving oil recovery.
  3. The impact of connate water saturation and salinity on oil recovery and CO₂ storage capacity during carbonated water injection in carbonate rock

    • Chinese Journal of Chemical Engineering (2019)
    • Citations: 29
    • Analyzes how variations in connate water saturation and salinity influence oil displacement efficiency and CO₂ trapping during CWI in carbonate formations.
  4. Effects of type and distribution of clay minerals on the physico-chemical and geomechanical properties of engineered porous rocks

    • Scientific Reports (2023)
    • Citations: 21* (recently published)
    • Studies how different clay minerals affect the structural integrity and chemical behavior of engineered porous rocks, impacting reservoir performance.
  5. An experimental insight into the influence of sand grain size distribution on the petrophysical and geomechanical properties of artificially made sandstones

    • Journal of Petroleum Science and Engineering (2022)
    • Citations: 15
    • Explores the role of sand grain size variations in determining the permeability, porosity, and mechanical strength of artificial sandstone samples.

Zhou Zhiwu | Engineering | Best Researcher Award

Assoc. Prof. Dr. Zhou Zhiwu | Engineering | Best Researcher Award

School of Civil and Environmental Engineering at Hunan University of Science and Engineering, China

Zhou zhiwu, a senior engineer and registered tester, is an associate professor and master’s supervisor at hunan university of science and engineering. he earned his ph.d. in transportation infrastructure and territory from the polytechnic university of valencia (🇪🇸) with top honors, including the UPV Outstanding Doctorate and the 2023 Spanish Outstanding Doctoral Award 🏆. with 15 years in national engineering projects, he has led major constructions, published 28 research papers 📄, and serves as a reviewer for 20 SCI journals. his expertise spans (ancient) bridge monitoring, high-speed railway track optimization, and sustainable structural design.

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience 🎓👷‍♂️

📚 Education:

  • 🎓 Bachelor’s in Architectural Engineering – Lanzhou Jiaotong University (2000-2004)
  • 🎓 Master’s in Transportation Engineering – Lanzhou Jiaotong University (2013-2016)
  • 🎓 Ph.D. in Transport Infrastructure & Territory – Polytechnic University of Valencia, Spain (2019-2023) 🏅

💼 Work Experience:

  • 🏗 Project Manager – China Railway 15th Bureau Group (2002-2017)
  • 🏢 Chief Engineer – Xinjiang Highway Science & Technology Research Institute (2017-2018)
  • 📖 Full-time Teacher & Leader – Chongqing Public Vocational Transport College (2018-2019)
  • 🔬 Doctor & Associate Researcher – Polytechnic University of Valencia, Spain (2019-2023)
  • 🎓 Associate Professor & Master Supervisor – Hunan University of Science and Engineering (2023-Present)

Professional Development 🚀🔬

Zhou zhiwu is a multidisciplinary researcher and engineer specializing in transportation infrastructure, structural health monitoring, and sustainable development. with over 15 years of experience in large-scale construction projects 🏗, he has contributed to high-speed railways 🚄, highways 🛣, and industrial buildings 🏢. he has led and participated in 11 international and national research projects, collaborated with top institutions, and published extensively in SCI-indexed journals 📚. in addition to research, he is a dedicated educator 📖 and serves as an editorial board member for the American Journal of Environmental Science and Engineering, actively reviewing 148+ research articles.

Research Focus 🔍🏗

Zhou zhiwu’s research lies in transportation engineering, structural monitoring, and sustainable infrastructure:

  • 🏛 (Ancient) Bridge & Building Health Monitoring – Studying structural integrity & durability
  • 🌱 Sustainable Infrastructure – Coupling optimization for large-scale structures
  • 🚄 High-Speed Railway Track Optimization – Preventing track diseases & enhancing efficiency
  • 🏗 Indeterminate Structural Design – Improving extra-large bridge sustainability
  • 🔬 Engineering Project Management – Enhancing efficiency in large-scale construction

his work integrates modern monitoring techniques 📡, advanced materials 🏗, and sustainable engineering 🌱 to enhance long-term infrastructure performance.

Awards & Honors 🏆🎖

  • 🏅 UPV Outstanding Doctorate Award – Polytechnic University of Valencia, Spain
  • 🏆 2023 Spanish Outstanding Doctoral Award – Top honor for doctoral research
  • 🏗 National Engineering Construction Quality Management Award (First Class)
  • 🏆 First-Class Science & Technology Award – China Railway Construction Corporation
  • 🏅 Provincial & Ministerial-Level Awards – Henan Province (Two awards)
  • 🏆 China Civil Engineering Society “National Second Prize”
  • 🎖 Reviewer for 20 SCI Journals – Reviewed 148+ articles

Publication Top Notes

  1. Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil

    • Journal of Building Engineering, 2025.
    • DOI: 10.1016/j.jobe.2024.111636
    • Citation (APA):
      Author(s). (2025). Research on spatial deformation monitoring and numerical coupling of deep foundation pit in soft soil. Journal of Building Engineering, XX, 111636.
  2. Three-dimensional finite element-coupled optimisation assessment of extra-large bridges

    • Structures, 2024.
    • DOI: 10.1016/j.istruc.2024.107743
    • Citation (APA):
      Author(s). (2024). Three-dimensional finite element-coupled optimisation assessment of extra-large bridges. Structures, XX, 107743.
  3. Research on coupling optimization of carbon emissions and carbon leakage in international construction projects

    • Scientific Reports, 2024.
    • DOI: 10.1038/s41598-024-59531-4
    • Citation (APA):
      Zhou, Z. (2024). Research on coupling optimization of carbon emissions and carbon leakage in international construction projects. Scientific Reports, XX, 59531. Building the future: Smart concrete as a key element in next-generation construction
    • Construction and Building Materials, 2024.
    • DOI: 10.1016/j.conbuildmat.2024.136364
    • Citation (APA):
      Zhou, Z. (2024). Building the future: Smart concrete as a key element in next-generation construction. Construction and Building Materials, XX, 136364.
  4. The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model

    • Sustainable Cities and Society, 2024.
    • DOI: 10.1016/j.scs.2024.105201
    • Citation (APA):
      Author(s). (2024). The centennial sustainable assessment of regional construction industry under the multidisciplinary coupling model. Sustainable Cities and Society, XX, 105201.

Dalel Azaiez | Engineering | Best Researcher Award

Ms. Dalel Azaiez | Engineering | Best Researcher Award 

Ms. Dalel Azaiez, Higher Institute of Technological Studies of Gafsa, Tunisia

Ms. Dalel Azaiez is a skilled geotechnical engineer and educator based at the Higher Institute of Technological Studies of Gafsa, Tunisia. With a Ph.D. in Geotechnical Engineering from the National Engineering School of Tunis, she has contributed to the field through both academic and practical applications, including the invention of the Cylindrical Shear Tool (TN 2020/0256). Her expertise spans civil engineering, soil mechanics, and quality control, and she brings practical knowledge to her teaching roles across several prestigious Tunisian institutions. Ms. Azaiez is proficient in technical tools such as Python, AutoCAD, and Arche Ossature, complemented by certifications in quality management and language proficiency.

PROFILE

Google  Scholar Profile

Scopus Profile

Educational Details

Ms. Dalel Azaiez is an accomplished academic and geotechnical engineer with a diverse background in civil engineering, teaching, and research innovation. She earned her Doctor of Philosophy in Geotechnical Engineering from the National Engineering School of Tunis (2015-2023), where she also contributed as a research engineer at SIMPRO, a firm specializing in geotechnical engineering. Her work led to the co-invention of the Cylindrical Shear Tool (TN 2020/0256), showcasing her drive for advancing practical applications in engineering. Ms. Azaiez’s earlier studies include a Civil Engineering degree from the National Engineering School of Sfax (2012-2015) and preparatory coursework in mathematics and physics at the Sfax Preparatory Engineering Institute, following her high school studies at Mohamed Ali Sfax.

Professional Experience

Ms. Azaiez has a rich teaching history across various esteemed institutions in Tunisia. Currently, she serves as a contract teacher at the Higher Institute of Technological Studies of Gafsa, where she instructs on quality control, computer-aided design, and project planning software, among other engineering-related topics. Her previous teaching roles include work as a temporary teacher at the Private Higher School of Engineering and Technology (ESPRIT), the Military Academy Fondouk El Jdid, and the National Engineering School of Tunis. Additionally, she taught practical classes in soil mechanics at the Higher Institute of Environmental Technologies, Urban Planning, and Building (ISTEUB).

Research Interest

Ms. Azaiez’s research is rooted in soil mechanics, materials testing, and innovative geotechnical engineering tools. Her contributions are marked by a strong focus on applying theoretical knowledge to solve real-world engineering problems, evident from her involvement in patenting the Cylindrical Shear Tool. Her technical acumen spans laboratory testing methods, geotechnics, and practical civil engineering applications.

Skills and Training

Her skill set includes proficiency in Python, AutoCAD 2D, and specialized engineering software like Arche Ossature. Ms. Azaiez is certified in ISO 9001 Quality Management and holds a DELF diploma, confirming her multilingual proficiency. Her continuous learning is exemplified by recent training in Python (2024), enhancing her technical and programming capabilities.

Ms. Azaiez’s academic, research, and teaching experiences underscore her commitment to geotechnical engineering and applied sciences, contributing to her impactful role in Tunisia’s higher education landscape.

Top Notable Publications

Azaiez, D., Boullosa Allariz, B., Levacher, D. (2024). Study of Physical and Mechanical Relationships during the Natural Dewatering of River Sediments and a Kaolin. Journal of Marine Science and Engineering, 12(8), 1354. Citations: 0.

Manigniavy, S.A., Bouassida, Y., Azaiez, D., Bouassida, M. (2023). Using Compression and Swelling Indices to Characterize Expansive Soils. Lecture Notes in Civil Engineering, 305, pp. 121–128. Citations: 1.

Bouassida, M., Azaiez, D. (2023). New Tool for the Measurement of Soils’ Shear Strength. Lecture Notes in Civil Engineering, 305, pp. 63–76. Citations: 0.

Azaiez, D., Bouassida, M. (2022). An Efficient Tool to Determine Undrained Shear Strength of Soft Soils. Geotechnical Engineering, 53(4), pp. 25–35. Citations: 0.

Bouassida, M., Manigniavy, S.A., Azaiez, D., Bouassida, Y. (2022). New Approach for Characterization and Mitigation of the Swelling Phenomenon. Frontiers in Built Environment, 8, 836277. Citations: 8.

Bouassida, M., Azaiez, D. (2019). On the Determination of Undrained Shear Strength from Vane Test. Sustainable Civil Infrastructures, pp. 50–68. Citations: 2.

Azaiez, D., Bouassida, M., Boullosa Allariz, B., Levacher, D. (2018). On the Characterization and Valorization of Sediments. 1st International Conference on Advances in Rock Mechanics, TuniRock 2018, pp. 133–142. Citations: 1.

Conclusion

Based on her academic qualifications, innovation in tool development, teaching experience, and research focus, Ms. Dalel Azaiez is a competitive candidate for the “Research for Best Researcher Award.” Her achievements and contributions highlight her dedication to advancing geotechnical engineering, which aligns well with the award’s focus on recognizing impactful research and practical innovation.

 

 

 

Masahiro Nishida | Impact Engineering | Best Researcher Award

Dr. Masahiro Nishida | Impact Engineering | Best Researcher Award

Orcid Profile

Educational Details

B.E. in Mechanical Engineering (1991): Tokyo Institute of Technology.

M.E. in Mechanical Engineering (1993): Tokyo Institute of Technology.

Ph.D. in Mechanical Engineering (1996): Tokyo Institute of Technology, under the supervision of Professor H. Matsumoto. His thesis was titled “Evaluation Method of Mechanical Properties for Material by Phase-Sensitive Acoustic Microscope”.

 

Professional Experience

Prof. Nishida began his career as a Research Associate in the Department of Mechanical Science at Tokyo Institute of Technology from 1996 to 1997. He then joined Nagoya Institute of Technology as a Research Associate in 1997, working under Professor K. Tanaka. He progressed to Lecturer (2001-2004), Associate Professor (2004-2018), and has been a full Professor since 2018. In addition to his academic roles, he has served as the General Manager of the Quality Innovation Techno-Center at Nagoya Institute of Technology since 2022. He has also been a visiting researcher at Luleå University of Technology, Sweden, in 2009.

Research Interest

Prof. Masahiro Nishida’s research focuses on the dynamic behavior of materials under extreme conditions, with particular emphasis on hypervelocity impacts and advanced material properties. His work on hypervelocity impact explores the performance of materials like metals and plastics used in space debris bumpers, carbon fiber-reinforced plastics, and components produced through additive manufacturing. In the field of dynamic strength of advanced materials, he investigates the mechanical properties of recycled aluminum alloys, additive manufacturing materials, and biodegradable plastics using the split Hopkinson pressure bar (SHPB) technique, which allows for high-strain-rate testing. Additionally, his research into the dynamics of heterogeneous materials involves studying the behavior of aggregated soft particles and understanding how contact forces propagate within these assemblies. This combination of experimental and computational approaches provides valuable insights into the resilience and performance of materials in extreme environments.

Top Notable Publications

Effects of electron beam irradiation on hypervelocity impact behavior of carbon fiber reinforced plastic plates
Journal: Journal of Composite Materials
Published: December 2021
DOI: 10.1177/00219983211037049
Citations: Data not provided through Scopus.

Effects of the shapes and addition amounts of crosslinking reagents on the properties of poly‐3‐hydroxybutyrate/poly(caprolactone) blends
Journal: Journal of Applied Polymer Science
Published: June 2021
DOI: 10.1002/app.51210
Citations: Data not provided through Scopus.

Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends
Journal: Materials Today Communications
Published: March 2021
DOI: 10.1016/j.mtcomm.2020.101852
Citations: Data not provided through Scopus.

Correlative analysis between morphology and mechanical properties of poly-3-hydroxybutyrate (PHB) blended with polycaprolactone (PCL) using solid-state NMR
Journal: Polymer Testing
Published: November 2020
DOI: 10.1016/j.polymertesting.2020.106780
Citations: Data not provided through Scopus.

Correlative analysis between solid-state NMR and morphology for blends of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate)
Journal: Polymer
Published: 2020
DOI: 10.1016/j.polymer.2020.122591
Citations: Data not provided through Scopus.

Effects of deformation rate on tensile properties of ramie fiber/PLA/PBAT composites
Conference: ECCM 2018 – 18th European Conference on Composite Materials
Published: 2020
EID: 2-s2.0-85084162322
Citations: Data not provided through Scopus.

Effects of gamma ray irradiation on penetration hole in and fragment size from carbon fiber reinforced composite plates in hypervelocity impacts
Journal: Composites Part B: Engineering
Published: July 2019
DOI: 10.1016/j.compositesb.2019.04.007
Citations: Data not provided through Scopus.

Influence of impact angle on size distribution of fragments in hypervelocity impacts
Journal: International Journal of Impact Engineering
Published: June 2019
DOI: 10.1016/j.ijimpeng.2019.02.006
Citations: Data not provided through Scopus.

Conclusion

Prof. Masahiro Nishida is a highly qualified candidate for the Best Researcher Award. His strong educational background, extensive research experience, leadership roles, and cutting-edge research in dynamic material properties and hypervelocity impact make him a prominent figure in mechanical engineering. His research aligns well with current industrial needs, particularly in aerospace, sustainability, and material innovation, further enhancing his candidacy for such an award.

 

Alex Chandraraj | Engineering | Excellence in Research

Dr. Alex Chandraraj | Engineering | Excellence in Research

Dr. Alex Chandraraj, Kieluniversity, Germany

Dr. Alex Chandraraj is a post-doctoral fellow at Christian-Albrechts-Universität zu Kiel, Germany. He holds a Ph.D. in Physics, specializing in condensed matter physics and materials science. His research focuses on advanced materials, nanostructures, and their applications in renewable energy technologies. Dr. Chandraraj has authored several peer-reviewed publications in prestigious scientific journals and has presented his work at international conferences. He is dedicated to exploring innovative solutions to global energy challenges through material science.

PROFILE

Orcid Profile

Educational Details

Dr. Chandraraj earned his Ph.D. in Chemistry, specializing in electro-catalysis, from the Centre for Nano and Soft Matter Sciences, Bangalore, in 2022. His thesis, titled “Nanomaterials for Electrochemical Water Activation,” was supervised by Dr. Neena Susan John. He also holds an M.Sc. (2014) and B.Sc. (2012) in Chemistry from S.T. Hindu College, Nagercoil, affiliated with Manonmaniam Sundaranar University, where he was a university rank holder in both degrees.

Professional Experience

Dr. Alex Chandraraj has extensive experience in the field of electro-catalysis, having worked on various research projects focused on advanced nanomaterials and sustainable energy applications. Since February 2024, he has been a Post-doctoral Fellow at Christian-Albrechts-Universität zu Kiel, Germany, where he focuses on modifying nickel surfaces through wet-chemical deposition as part of the PrometH2eus project. His work aims to enhance the performance of nickel-based catalysts for energy-efficient applications. Prior to this, from August 2023 to January 2024, he was a Guest Researcher at the same institution, where he investigated oxide interface structures under real-time reaction conditions using operando surface X-ray diffraction techniques. Between February 2022 and July 2023, he served as a Project Associate at the Centre for Nano and Soft Matter Sciences in Bangalore, where he developed and characterized high-valent nickel-based electrocatalysts for urea electrolysis, emphasizing hydrogen production and energy efficiency. Additionally, as a Research Associate from August 2022 to January 2023, Dr. Chandraraj contributed to the development of nanomaterials for catalytic processes and renewable energy applications. His diverse research background underscores his expertise in electro-catalysis and nanomaterials for clean energy technologies.

Research  Interest

Dr. Alex Chandraraj’s research focuses on electro-catalysis and advanced nanomaterials, with a particular emphasis on sustainable energy solutions. His work explores the use of nanomaterials and metal oxides in water splitting and electrochemical water activation, aiming to improve the efficiency of hydrogen production through oxygen and hydrogen evolution reactions. He is also deeply involved in urea electrolysis, where he investigates high-valent nickel-based catalysts to develop cost-effective and energy-efficient processes for hydrogen production from urea-based waste. Additionally, Dr. Chandraraj’s research addresses nitrate and oxygen reduction reactions by tuning metal oxidation states in catalyst systems, optimizing their performance for environmental and energy applications. His broader goal is to innovate in renewable energy by developing advanced nanomaterials and surface modifications that enhance the efficiency and durability of catalysts used in clean energy technologies.

Top Notable Publications

“Role of active redox sites and charge transport resistance at reaction potentials in spinel ferrites for improved oxygen evolution reaction”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: Journal of Electroanalytical Chemistry

DOI: 10.1016/j.jelechem.2024.118613

“Unfolding the Significance of Regenerative Active Species in Nickel Hydroxide-Based Systems for Sustained Urea Electro-Oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: Chemistry of Materials

DOI: 10.1021/acs.chemmater.3c03062

“In-situ generated Ni(OH)2 on chemically activated spent catalyst sustains urea electro-oxidation in extensive alkaline conditions”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: International Journal of Hydrogen Energy

DOI: 10.1016/j.ijhydene.2024.01.339

“Evidence for Exclusive Direct Mechanism of Urea Electro-Oxidation Driven by In Situ-Generated Resilient Active Species on a Rare-Earth Nickelate”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2024

Journal: ACS Catalysis

DOI: 10.1021/acscatal.3c04967

“Spontaneous decoration of Ultrasmall Pt Nanoparticles on size‐separated MoS2 nanosheets”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2023

Journal: Chemistry – A European Journal

DOI: 10.1002/chem.202301596

“Probing the Evolution of Active Sites in MoO2 for Hydrogen Generation in Acidic Medium”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2023

Journal: ACS Applied Energy Materials

DOI: 10.1021/acsaem.3c00320

“Hydrogen and Hydrocarbons as Fuel”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2022

Book Chapter: Green Energy Harvesting: Materials for Hydrogen Generation and Carbon Dioxide Reduction

DOI: 10.1002/9781119776086.ch2

“Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2022

Journal: Journal of Materials Chemistry A

DOI: 10.1039/D1TA05753G

“Role of Metal Ion Sites in Bivalent Cobalt Phosphorus Oxygen Systems toward Efficient Oxygen Evolution Reaction”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2021

Journal: The Journal of Physical Chemistry C

DOI: 10.1021/acs.jpcc.1c05614

“Introduction of surface defects in NiO with effective removal of adsorbed catalyst poisons for improved electrochemical urea oxidation”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2021

Journal: Electrochimica Acta

DOI: 10.1016/j.electacta.2021.138425

“Competing Effect of Co3+ Reducibility and Oxygen-Deficient Defects Toward High Oxygen Evolution Activity in Co3O4 Systems in Alkaline Medium”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: ACS Applied Energy Materials

DOI: 10.1021/acsaem.0c00297

“A general route to free-standing films of nanocrystalline molybdenum chalcogenides at a liquid/liquid interface under hydrothermal conditions”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: Applied Surface Science

DOI: 10.1016/j.apsusc.2020.145579

“Nickel Cobalt Phosphite Nanorods Decorated with Carbon Nanotubes as Bifunctional Electrocatalysts in Alkaline Medium with a High Yield of Hydrogen Peroxide”

Authors: Chandraraj Alex, [additional authors not provided]

Year: 2020

Journal: ChemElectroChem

DOI: 10.1002/celc.202000176