Dr. Nan Liu | Physics | Best Researcher Award

Dr. Nan Liu | Physics | Best Researcher Award

Student at University of Science and Technology Beijing, China

Dr. Nan Liu 🎓 is a rising scholar in the domain of mechanics, renowned for her cross-disciplinary grasp of mathematics, physics, and materials science. With an ongoing Ph.D. at the University of Science and Technology Beijing 🏛️, she delves into the intricate world of crystal nucleus growth during solidification — a pivotal concept in materials engineering. Her analytical mindset 🌐 was shaped early on during her Master’s in Applied Mathematics and a Bachelor’s in Mathematics and Applied Math. Backed by national-level funding 💰 from the NSFC, her research is crucial to understanding the kinetics of nanosecond phase formation in copper alloys. With a methodical approach and a passion for deep theoretical exploration, Nan Liu’s academic arc reflects both precision and persistence. She symbolizes the future of multidisciplinary scientific investigation 🔍, standing at the intersection of abstract modeling and material behavior. Her journey is as structured as the crystals she studies — ordered, impactful, and evolving. ✨

Professional Profile 

📘 Education

Nan Liu’s 📚 academic odyssey is rooted in rigorous disciplines and thoughtful progression. She is currently pursuing a Ph.D. in General and Fundamental Mechanics at the University of Science and Technology Beijing (2020–2025), under the mentorship of Prof. Ming-Wen Chen 🧪. Her doctoral thesis focuses on crystal nucleus growth morphology — a vital concern in solidification science. Earlier, she earned a Master’s degree in Applied Mathematics (2016–2019) from Beijing Information Science & Technology University, exploring dynamic behaviors of nonlinear equations 🌀 under the guidance of Prof. Xiao-Yong Wen. Her journey began with a Bachelor’s in Mathematics and Applied Mathematics from Baotou Teachers’ College (2012–2016), where she built the foundational knowledge that now underpins her interdisciplinary insight. Each academic stage not only honed her technical acumen but also broadened her lens toward complex problem-solving and real-world modeling 🔭 — making her a well-rounded, resilient, and intellectually curious researcher. 🎓✨

💼 Professional Experience

Though primarily rooted in academia, Nan Liu’s professional development 🌐 reflects deep immersion in research-intensive environments. As a doctoral candidate, she actively engages in computational modeling, thermophysical analysis, and solidification dynamics — collaborating with peers and mentors in high-precision labs 🔬. Her participation in funded research under the NSFC grant has given her project management experience, proficiency in analytical tools, and exposure to multi-phase material behavior under shear flows ⚙️. While her CV does not yet reflect formal industry roles, her academic trajectory mimics a research scientist’s responsibilities: hypothesis formulation, numerical simulation, data interpretation, and scholarly dissemination 📈. She contributes to the academic community by assisting in coursework, guiding junior students, and participating in departmental research seminars. Nan Liu’s role as a scholar is more than theoretical; it is a living practice of scientific exploration and knowledge transfer. With this blend of technical depth and project involvement, she is poised for impactful contributions to science and engineering. 🧑‍🔬📊

🔬 Research Interests

Nan Liu’s research world 🌍 orbits around the intersections of mathematics, physics, and materials science — forming a triad of intellectual synergy. Her core focus is the solidification processes in metallic systems, especially the morphology of crystal nuclei during rapid phase transformations. She explores how nanosecond-scale phase formations are influenced by multidimensional shear flows, utilizing a blend of kinetic theory, dynamic systems, and thermodynamic modeling 🔥. Her background in nonlinear equations and applied mathematics enables her to investigate material behaviors through both numerical and analytical lenses 📐. Beyond materials science, she maintains a deep interest in theoretical physics and computational simulations — seeking universal patterns and predictive models within complex systems. Her vision is to bridge the gap between abstract theory and real-world materials engineering 🧩, pushing the boundaries of how we understand the microstructural evolution in advanced alloys. With curiosity and rigor, she forges knowledge at the edge of known science. 🚀

🏆 Awards and Honors

Nan Liu’s academic journey 🌟 has been highlighted by her participation in a prestigious NSFC-funded research project (Grant No. 51971031), focusing on in-situ phase formation during alloy solidification — a competitive and nationally significant initiative 💼. While explicit awards aren’t listed, being entrusted with such a cutting-edge project testifies to her scientific credibility, diligence, and intellectual promise 🧠. Her consistent academic excellence across undergraduate, graduate, and doctoral levels — in elite institutions such as USTB — reflects the high standards she has upheld throughout her career. She has also gained recognition within her research groups for problem-solving, modeling proficiency, and collaborative mindset 🤝. Whether presenting her findings in internal forums or contributing to experimental validations, Nan Liu remains a trusted and respected member of her academic community. These honors may not always be in the form of medals 🥇, but they are etched into the foundations of impactful research and scholarly trust. 🎓🔬

📚 Publications Top Note 

Title: A Particle-Based Approach for the Prediction of Grain Microstructures in Solidification Processes

Authors: Salem Mosbah, Rodrigo Gómez Vázquez, Constantin Zenz, Damien Tourret, Andreas Otto

Published: April 17, 2025

DOI: 10.48550/arXiv.2504.12858

Summary:
This study introduces a novel approach to track crystallographic solidification grain envelopes using Lagrangian particles. The model simulates competitive grain growth scenarios and transitions between columnar and equiaxed structures. It has been validated against analytical, experimental, and numerical results, and coupled with a laser-material-interaction model to simulate grain growth during laser beam welding of steel.

🧩 Conclusion

Nan Liu is not merely a scholar 📖 — she is an embodiment of cross-disciplinary excellence, threading together mathematics, physics, and materials science into a unified quest for understanding the building blocks of matter 🔍. With strong roots in theory and hands-on application, her research is both groundbreaking and relevant, contributing to material design, thermophysical modeling, and solidification dynamics. She is supported by national funding and shaped by elite mentorship — a clear sign of her standing in the academic arena 🏛️. Her trajectory suggests not just potential but a strong certainty of impact in the field of mechanics and beyond. Whether pursuing postdoctoral endeavors, teaching, or continuing in high-level research, Nan Liu is poised to become a significant contributor to science’s future. Her journey is one of precision, patience, and purposeful curiosity 🌌 — and her story is just beginning to unfold. 🌱🔮