Xuyang Liu | Hadron Physics | Research Excellence Award

Mr. Xuyang Liu | Hadron Physics | Research Excellence Award

Associate Professor | Liaoning University | China

Mr. Xuyang Liu is an active researcher whose work is deeply rooted in hadron physics, contributing substantially to the global understanding of theoretical models and particle interactions within hadron physics. His research spans advanced investigations of baryon structure, multi-quark dynamics, meson cloud effects and form-factor behavior, all of which are central themes within hadron physics. Through high-quality publications, he has strengthened theoretical frameworks that support precision modeling in hadron physics and expanded collaborations with international groups working on perturbative chiral quark approaches and related computational methods. His scholarly contributions demonstrate methodological depth, consistently advancing the predictive capabilities of hadron physics while offering results that inform broader high-energy studies. His influence is reflected in his cumulative publication record, which showcases impactful findings recognized within the hadron physics community. By integrating refined analytical techniques and cross-disciplinary insights, he continually enhances the scientific dialogue surrounding hadron physics, contributing to both conceptual development and practical modeling applications. His sustained commitment to rigorous research has positioned him as a significant contributor to ongoing progress in hadron physics, supporting both theoretical advancement and societal scientific enrichment. Scopus profile of 306 Citations, 30 Documents, 10 h-index.

Citation Metrics (Scopus)

350
250
150
50
0

306
Citations

30
Documents

10
h-index

                                  ■ Citations (Blue)          ■ Documents (Red)           ■ h-index (Green)

Featured Publications

Xin-Jian Wen | QCD Diagram | Best Researcher Award

Mr. Xin-Jian Wen | QCD Diagram | Best Researcher Award

Professor | Shanxi University | China

Mr. Xin-Jian Wen is a distinguished physicist renowned for his extensive contributions to Quantum Chromodynamics (QCD) and theoretical particle physics. His research is deeply rooted in exploring the properties of strongly interacting matter, the mechanisms underlying the QCD diagram transitions, and the behavior of strange quark matter in strong magnetic fields. Over the years, Mr. Xin-Jian Wen has built an influential academic profile through his pioneering studies on QCD diagram modeling, quark matter stability, and high-density nuclear matter, shaping global understanding in the field of QCD diagram phenomenology. His scholarly endeavors have led to numerous high-impact publications in leading journals such as Physical Review D, Physical Review C, and Journal of Physics G. Collaborating with eminent physicists from institutions including the University of Texas at El Paso and the Institute of High Energy Physics, he has advanced the precision of QCD diagram simulations and theoretical frameworks for quark-gluon interactions. His studies on the stability of strange quark matter and compact star structure through QCD diagram analyses have been particularly influential in connecting quantum field theory with astrophysical applications. Through sustained dedication, Mr. Xin-Jian Wen has become an integral contributor to theoretical high-energy physics, enriching the field of QCD diagram research and its broader implications in particle astrophysics. His approach integrates rigorous computational models with analytical perspectives, providing insights into QCD diagram transitions, nuclear phase structures, and the dynamics of matter under extreme conditions. His research continues to inspire advancements in QCD diagram studies, impacting both fundamental science and applied physics. With consistent academic productivity, strong collaborative networks, and impactful contributions to QCD diagram development, Mr. Xin-Jian Wen stands as a leading figure in experimental and theoretical high-energy studies. Scopus profile of 568 Citations, 44 Documents, 11 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Measuring the characterization of AFBR-S4N44P164M SiPM array at low temperatures for CEνNS detection. (2025). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

2. Quark–hadron deconfinement at zero temperature in a strong magnetic field. (2025). European Physical Journal Plus.

3. Stability analysis of magnetized quark matter in Tsallis statistics. (2025). Universe.

4. Deconfinement of magnetized quark matter in a quasiparticle description. (2025). International Journal of Modern Physics A.

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Post-Doctoral Researcher | University of Geneva | Switzerland

Dr. Atangana Likéné André Aimé is a distinguished researcher in High Energy Physics with expertise spanning Nuclear Physics, Particle Physics, and Radiation Protection. His academic background, marked by advanced degrees in Physics, reflects a strong foundation in theoretical and applied High Energy Physics. Professionally, he has served as a Research Officer at the Research Center of Nuclear Science and Technology, a Lecturer at the University of Yaoundé I, and a Post-Doctoral Researcher affiliated with the ATLAS Experiment at CERN, contributing to global advancements in High Energy Physics. His research interests include Quantum Chromodynamics, quark confinement, nuclear decay, and the application of machine learning to High Energy Physics phenomena. Dr. Atangana’s excellence in research has earned him notable honors, including the Best Researcher Award in High Energy Physics, academic scholarships, and leadership roles in scientific collaborations. His skills encompass symbolic computation, scientific programming, and Monte Carlo simulations, all pivotal in modern High Energy Physics modeling and analysis. With an active presence in international conferences and publications across prestigious journals like Nuclear Physics A, European Physical Journal C, and Modern Physics Letters A, he continues to advance High Energy Physics through innovative theoretical frameworks and computational methods. His dedication to advancing knowledge and mentoring the next generation of scientists underscores his professional integrity and global recognition. Scopus profile of 37 Citations, 24 Documents, 3 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Ahmadou, K., Atangana Likéné, A., Mbida Mbembe, S., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt. International Journal of Modern Physics E.

2. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, Oumar Bobbo, M., & Saidou. (2025). Analytical solutions of the 222Rn radon diffusion-advection equation through soil using Atangana–Baleanu time fractional derivative. Indian Journal of Physics.

3. Nga Ongodo, D., Atangana Likéné, A. A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times. The European Physical Journal C.

4. Nga Ongodo, D., Atangana Likéné, A. A., Zarma, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations. International Journal of Modern Physics E.

5. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, & Saidou. (2025). Angular momentum dependence of nuclear decay of radon isotopes by emission of 14C nuclei and branching ratio relative to α-decay. The European Physical Journal Plus.