Jing Zhang | Materials Science | Best Researcher Award

Ms. Jing Zhang | Materials Science | Best Researcher Award

Lecturer at Shanxi Normal University, China

Jing Zhang is a dedicated researcher and lecturer at Shanxi Normal University, specializing in organic electronics and molecular materials. She earned her Ph.D. in Physical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2018-2022) under the mentorship of Prof. Lang Jiang. She previously completed her Master’s in Physics at Hunan University (2015-2018) and her Bachelor’s in Physics. Her research focuses on organic semiconductor materials, neuromorphic devices, and molecular doping. She has led multiple funded research projects and published extensively in high-impact journals, contributing significantly to advanced materials science and device engineering.

Professional Profile:

Orcid

Scopus

Education & Experience 📚🔬

  • Ph.D. in Physical Chemistry (2018-2022) 🏛️
    Institute of Chemistry, Chinese Academy of Sciences

    • Focus: Organic semiconductors and neuromorphic devices

    • Advisor: Prof. Lang Jiang 🎖️

  • Master’s in Physics (2015-2018) 🏛️
    Hunan University

    • Specialization: Semiconductor physics and nanomaterials

    • Advisor: Prof. Guifang Huang 📡

  • Lecturer (2022-Present) 🎓
    Shanxi Normal University, College of Chemistry and Materials Science

    • Research on organic electrochemical transistors & bioelectronics

    • Development of 2D molecular crystals & neuromorphic computing devices 🧠

  • Researcher (2016-2022) 🔬
    Institute of Chemistry, Chinese Academy of Sciences

    • Investigated porphyrin-based organic transistors & nanomaterials

    • Advanced graphene-like nanostructures for functional devices

Professional Development 📈💡

Jing Zhang has actively contributed to organic semiconductor research, pioneering advancements in molecular doping, neuromorphic devices, and biosensors. As the principal investigator of multiple projects funded by Shanxi Province and National Research Foundations, she has led breakthrough studies in organic single-crystal transistors and 2D molecular materials. Her expertise spans device fabrication, charge transport mechanisms, and nanomaterials for energy applications. Her research has been published in top journals like Advanced Materials, JACS, and ACS Materials Letters, reflecting her influence in next-generation electronics and bio-integrated systems. She also mentors students, fostering innovation in organic optoelectronics and flexible electronics.

Research Focus 🧪⚛️

Jing Zhang’s research is centered on organic electronics, particularly semiconductor devices and molecular materials. She explores:

  • Organic Electrochemical Transistors (OECTs) for bioelectronic sensing 🏥

  • Porphyrin-Based Organic Semiconductors for neuromorphic computing 🧠💡

  • Molecular Doping Techniques for high-performance organic transistors ⚙️

  • Two-Dimensional (2D) Molecular Crystals for next-gen optoelectronic applications 🌟

  • Functional Nanomaterials for sustainable energy conversion and storage ⚡🔋

Her innovative work bridges chemistry, materials science, and applied physics, pushing the limits of organic and molecular electronics for real-world applications.

Awards & Honors 🏆🎖️

  • Chinese Academy of Sciences Youth Science Award – Excellence Prize (2020-2021) 🏅
    Recognized for outstanding contributions to organic semiconductor research

  • University of Chinese Academy of Sciences “Three-Good” Student Award (2020) 🎓
    Honored for academic excellence and research achievements

  • Marie Curie Seal of Excellence – Aalborg University (2024) 🌍✨
    Awarded for outstanding research contributions in materials science and electronics

Publication Top Notes

  1. “Adhered-3D Paper Microfluidic Analytical Device Based on Oxidase-Mimicking Activity of Co-Doped Carbon Dots Nanozyme for Point-of-Care Testing of Alkaline Phosphatase”

    • Journal: Analytica Chimica Acta

    • Publication Date: December 2024

    • DOI: 10.1016/j.aca.2024.343378

    • Summary: This study introduces a three-dimensional paper-based microfluidic analytical device (3D-μPAD) leveraging the oxidase-mimicking activity of cobalt-doped carbon dots (Co-CDs) nanozyme. The device is designed for point-of-care testing of alkaline phosphatase (ALP), an important biomarker. The Co-CDs nanozyme catalyzes the oxidation of colorimetric substrates, enabling the visual detection of ALP levels. The 3D-μPAD offers a simple, cost-effective, and efficient method for ALP detection, suitable for clinical diagnostics.

  2. “Solution-Processed Monolayer Molecular Crystals: From Precise Preparation to Advanced Applications”

    • Journal: Precision Chemistry

    • Publication Date: August 26, 2024

    • DOI: 10.1021/prechem.3c00124

    • Summary: This article reviews the advancements in the preparation and application of solution-processed monolayer molecular crystals. It discusses precise fabrication techniques and explores their potential in various advanced applications, including electronics and optoelectronics. The study emphasizes the significance of molecular orientation and crystallinity in determining the performance of these materials.

  3. “Low Contact Resistance Organic Single‐Crystal Transistors with Band‐Like Transport Based on 2,6‐Bis‐Phenylethynyl‐Anthracene”

    • Journal: Advanced ScienceJing 

    • Publication Date: March 18, 2024

    • DOI: 10.1002/advs.202400112

    • Summary: This research presents the development of organic single-crystal transistors utilizing 2,6-bis-phenylethynyl-anthracene. The study focuses on achieving low contact resistance and demonstrates band-like transport behavior, which is crucial for high-performance organic electronic devices. The findings contribute to the understanding and improvement of charge transport in organic semiconductors.

  4. “Cation Etching-Induced Deep Self-Reconstruction to Form a Polycrystalline Structure for Efficient Electrochemical Water Oxidation”

    • Journal: Chemical Communications

    • Publication Date: 2024

    • DOI: 10.1039/d4cc02009j

    • Summary: This study explores a cation etching-induced self-reconstruction process that leads to the formation of a polycrystalline structure, enhancing the efficiency of electrochemical water oxidation. The research provides insights into material design strategies for developing high-performance catalysts in water-splitting applications.

  5. “Diazulenorubicene as a Non‐Benzenoid Isomer of Peri‐Tetracene with Two Sets of 5/7/5 Membered Rings Showing Good Semiconducting Properties”

    • Journal: Angewandte Chemie International Edition

    • Publication Date: September 25, 2023

    • DOI: 10.1002/anie.202304632

    • Summary: This research introduces diazulenorubicene, a non-benzenoid isomer of peri-tetracene featuring two sets of 5/7/5 membered rings. The study highlights its good semiconducting properties, suggesting potential applications in organic electronics. The unique structural attributes of diazulenorubicene contribute to its electronic characteristics.

Conclusion

Jing Zhang’s track record in high-impact research, leadership in project execution, and innovative contributions to organic electronics and energy materials make her a strong candidate for the Best Researcher Award. Her work has not only advanced fundamental understanding but also has potential applications in next-generation electronic and energy devices.

Sijo A K | Materials Science | Best Researcher Award

Dr. Sijo A K | Materials Science | Best Researcher Award

Assistant Professor at Mary Matha Arts and Science College Wayanad, India

Dr. sijo a. k. is a dedicated researcher and academician affiliated with Mary Matha Arts and Science College, Wayanad. With a strong background in materials science, he has contributed significantly to nanomaterials, ferrites, and thin-film research. His expertise spans structural, optical, magnetic, and electrical properties of advanced materials. With an H-index of 9 and 170 citations, his work is widely recognized in reputed journals like Physica Scripta, Applied Nanoscience, and Journal of Magnetism and Magnetic Materials. Passionate about solar energy, nanotechnology, and spinel materials, he continues to drive innovation in materials research. 🔬📚

Professional Profile:

Orcid

Education & Experience

🎓 Education:

  • Ph.D. in Materials Science 🏅

  • Master’s Degree in Physics 🧑‍🏫

  • Bachelor’s Degree in Physics 📖

👨‍🏫 Experience:

  • Assistant Professor, Mary Matha Arts and Science College, Wayanad 📚

  • Published 24+ research papers in high-impact journals 📑

  • Expertise in nanotechnology, ferrites, thin films, and solar energy materials 🌞🔬

  • Active reviewer for leading scientific journals 📝

Professional Development

🚀 Dr. sijo a. k. has continuously advanced his expertise through collaborative research, academic mentoring, and scientific publishing. His work focuses on advanced nanomaterials, thin films, and energy-efficient materials, pushing the boundaries of applied physics and material science. He has reviewed research for multiple high-impact journals and remains actively engaged in scientific conferences, workshops, and symposiums. Through international collaborations, he has co-authored papers with researchers from Ukraine, India, and Europe, contributing to cutting-edge material innovations. His commitment to academic excellence and interdisciplinary research makes him a key figure in modern material science. 🔬🌍

Research Focus

🧪 Dr. sijo a. k.’s research centers on advanced nanomaterials and thin films, with a particular interest in ferrites, spinel materials, and semiconductor applications. His studies explore magnetic, structural, and optical properties to enhance photocatalysis, energy storage, and solar cell efficiency. His contributions to copper tin sulfide (CTS) thin films and ferrite-based nanomaterials aim to develop sustainable, efficient materials for future energy applications. With an interdisciplinary approach, he integrates computational modeling, synthesis techniques, and experimental validation to unlock new possibilities in materials science. 🌍⚡

Awards & Honors

🏅 United Group Research Award for outstanding research contributions 🏆
🔬 Best Paper Awards in international conferences 📜
🌍 Recognized as a leading reviewer for top-tier journals 📝
📚 Highly Cited Researcher in materials science and nanotechnology 🎖
🎓 Ph.D. Fellowship for research in nanomaterials and thin films 🔍

Publication Top Notes

  1. “Impact of Cation Distribution in Shaping the Structural and Magnetic Characteristics of Ni-Cu Ferrite”

    Authors: J. Mazurenko, Sijo A. K., L. Kaykan, J. M. Michalik, Ł. Gondek, E. Szostak, and A. ZywczakX-MOL

    Journal: Physica ScriptaEureka Mag+6ScienceDirect+6ScienceDirect+6

    Publication Date: March 1, 2025

    DOI: 10.1088/1402-4896/adb2c3

    Summary: This study presents the synthesis, characterization, and magnetic properties of Cu₁₋ₓNiₓFe₂O₄ nanocrystalline ferrites (0.0 ≤ x ≤ 1.0) prepared using the sol–gel autocombustion method at neutral pH. The research focuses on how varying the cation distribution between copper and nickel influences the structural and magnetic characteristics of the resulting ferrites.

  2. “Post-Annealing-Induced Enhancement of Structural, Optical and Electrical Properties in Copper Tin Sulphide (CTS) Thin Films”

    Authors: Sijo A. K. and P. Sapna

    Journal: Physica Scripta

    Publication Date: March 1, 2025

    DOI: 10.1088/1402-4896/adb2c5

    Summary: This research investigates the impact of post-annealing on the structural, optical, and electrical properties of Copper Tin Sulfide (CTS) thin films. The CTS thin films were synthesized using the Successive Ionic Layer Adsorption and Reaction (SILAR) method and then annealed at temperatures of 100 °C, 200 °C, and 300 °C. Characterization techniques such as XRD, SEM, FTIR, UV–vis-NIR, and EDAX revealed that increasing the annealing temperature improved crystallinity, optical transmittance, and electrical conductivity. The films exhibited high bandgap energies (3.68–3.90 eV) and strong UV absorption, suggesting potential applications in high-performance optoelectronic devices.

  3. “Copper Precursor-Driven Variations in Structural, Optical and Electrical Properties of SILAR-Deposited CTS Thin Films”

    Authors: Information not available

    Journal: Physica Scripta

    Publication Date: January 1, 2025

    DOI: 10.1088/1402-4896/ada079

    Summary: Specific details about this paper are not available in the provided information.

  4. “Synthesis and Characterization of Copper Ferrite Nanoparticles for Efficient Photocatalytic Degradation of Organic Dyes”

    Authors: Information not available

    Journal: Journal of Nanotechnology

    Publication Date: January 2025

    DOI: 10.1155/jnt/8899491

    Summary: Specific details about this paper are not available in the provided information.

  5. “Enhancing Copper-Tin Sulfide Thin Films with Triethanolamine as a Complexing Agent”

    Authors: Information not available

    Journal: Journal of Molecular StructureScienceDirect+4ScienceDirect+4ScienceDirect+4

    Publication Date: 2025X-MOL+1SpringerLink+1

    DOI: 10.1016/J.MOLSTRUC.2025.141812

    Summary: Specific details about this paper are not available in the provided information.

Conclusion

Dr. Sijo A. K. is an emerging researcher with notable contributions to magnetic materials, nanotechnology, and renewable energy applications. While his H-index and citation count are moderate compared to top-tier researchers, his consistent publishing in high-quality journals and focus on sustainable energy solutions makes him a strong contender for young or mid-career researcher awards. If the award criteria focus on impact, innovation, and sustained contributions, he is a suitable candidate, particularly in material sciences. However, for top-tier international “Best Researcher” awards, a higher H-index and citation impact might be needed.

Angelica Rocco | Building Materials | Women Researcher Award

Dr. Angelica Rocco | Building Materials | Women Researcher Award

Orcid Profile

Educational Details

Dr. Angelica Rocco has a rich educational background centered on architecture and sustainable design. She participated in the International Workshop for PhD Students Water & Cities: Ecological Transition Through Water Saving and Management organized by UNISCAPE at the University of Naples Federico II in 2022. She earned a II Level Master in Architecture and Design for Internal Areas – Reconstruction of Small Countries from the Department of Architecture (DIARC) at the same university, where she completed her thesis titled The Head of the Skein: Interweaving of Ancient Knowledge and Flavors on the Traces of the Ancient Wool Route under the supervision of Prof. Adele Picone, achieving the highest evaluation of 110/110.

Dr. Rocco also holds a Master’s Degree in Building Engineering Architecture from the University of Naples Federico II, completed in July 2019. Her thesis, supervised by Prof. Dora Francese and co-supervised by Prof. Paulo J. Mendonça from the University of Minho (Portugal), explored Tensile Structures and Other Materials for Sustainable Architecture in Guimaraes (Portugal) – Social Housing, and she earned a final evaluation of 107/110. Additionally, she completed an Annual University Perfection Diploma in CLIL Methodology in Secondary School Education with English Reference from Dante Alighieri University for Foreigners in 2021, again achieving top marks of 110/110.

Her academic journey also includes professional training through a three-year program on initial teaching and internships (FIT) at the University of Naples Federico II (2017/2018), as well as participation in the Erasmus+ Program at the University of Minho, Portugal, during the 2015/2016 academic year. She began her educational path by earning a Scientific High School Diploma from L. Da Vinci Scientific High School in Vallo della Lucania, Italy, in 2003, graduating with a final score of 86/100.

Professional Experience

Technology Teacher (A060): First Level Secondary School, Naples (2020 – Present).

Laboratory Teacher for Textile and Embroidery: IFTS Training Center, Regenerative Tourism (March – June 2006).

Expert in Traditional Processing and Conservation: IFTS Training Center, Regenerative Tourism (March – June 2006).

Teaching Collaboration: Since 2019, Dr. Rocco has been collaborating with the University of Naples Federico II in teaching activities, particularly in the architectural technology sector (ICAR/12). She has worked closely with Prof. Paola De Joanna, Prof. Dora Francese, and Prof. Antonio Passaro.

Research Interest

Sustainable Architecture and Building Materials: Focus on tensile structures and the integration of eco-friendly materials for social housing projects.

Water Management in Urban Systems: Engaged in research on ecological transitions through water saving and sustainable urban design.

Conservation of Traditional Techniques: Specialization in traditional textile processing and its role in regenerative tourism.

Memberships

IEEE (Institute of Electrical and Electronics Engineers) since June 2023.

Eudoxia Research University, USA & India: International Innovation Program since January 2024.

Top Notable Publications

Adobe Blocks Reinforced with Vegetal Fibres: Mechanical and Thermal Characterisation
Authors: Angelica Rocco
Year: 2024
DOI: 10.3390/buildings14082582
Source: Buildings, August 22, 2024.

RETE DELLE GRANDI MACCHINE A SPALLA ITALIANE: ESTENSIONE DEL PATRIMONIO IMMATERIALE DAL DIVE INTO ICH UNESCO
Authors: Angelica Rocco
Year: 2023
Source: Los cuadernos del ReUSO, November 21, 2023.

Bibliometric Review of Building Material Assessment for Energy Efficiency in Urban Digital Twins
Authors: Angelica Rocco
Year: 2023
DOI: 10.55529/ijasm.35.22.32
Source: International Journal of Applied and Structural Mechanics, September 13, 2023.

Use of Vegetable Materials for Temporary Structures and Infrastructures
Authors: Angelica Rocco
Year: 2023
Source: Mediterranean Architecture and the Green-Digital Transition, September 8, 2023, pp. 313–324.

GIS Model of Vegetable Fibre Building Materials
Authors: Angelica Rocco
Year: 2023
Source: ICBBM 2023 5th International Conference on Bio-Based Building Materials (RILEM), June 20, 2023.

Bio-Based Building Materials
Authors: Angelica Rocco
Year: 2023
DOI: 10.1007/978-3-031-33465-8
ISBN: 9783031334641, 9783031334658
Source: Springer Nature Switzerland, 2023.

Farm to Fork e Biodiversità: nuove opportunità per il settore delle costruzioni dagli scarti delle filiere cerealicole
Authors: Angelica Rocco
Year: 2023
Source: Urbanistica Informazioni, 2023.

Paesaggio rurale, economia circolare e risorse vegetali: l’architettura dei Mulini ad acqua
Authors: Angelica Rocco
Year: 2023
Source: A cento anni dalla legge Croce. Nuove prospettive sul paesaggio, Department of Architecture, University of Naples Federico II, 2023.

Dalla Valle della Biodiversità Brembana per una rinascita della filiera del lino
Authors: Angelica Rocco
Year: 2023
Source: GIS Day 2022. Il GIS per il governo e la gestione del territorio, 2023.

On the Trail of the Ancient ‘The Wool Route’: Enhancement Proposal for the Campania Region in Italy
Authors: Angelica Rocco
Year: 2023
Source: GIS Day 2022. Il GIS per il governo e la gestione del territorio, 2023.

Copertina Rivista SMC N.16 | 2022 Digital and Completion Procedure
Authors: Angelica Rocco
Year: 2022
Source: Luciano Editore, December 2022.

Waterfront Renaissance in Bagnoli (Italy)
Authors: Angelica Rocco
Year: 2022
Source: Proceedings of the Xth edition of the ReUSO – Documentation, Restoration and Reuse of Heritage, November 2, 2022.

PRACTICABILITY STUDY FOR THE DEVELOPMENT OF A WOOL SUPPLY CHAIN IN CAMPANIA REGION, STUDIO DI FATTIBILITÀ PER LO SVILUPPO DI UNA FILIERA DELLA LANA NELLA REGIONE CAMPANIA
Authors: Angelica Rocco
Year: 2022
Source: Sustainable Mediterranean Construction, 2022.
EID: 2-s2.0-85160223775
ISSN: 24208213, 23851546.

Conclusion

Based on her diverse educational background, active teaching roles, and research contributions in architecture, sustainability, and urban systems, Dr. Angelica Rocco is well-suited for the Research for Best Researcher Award. Her work on sustainable architecture and her integration of traditional knowledge with modern engineering solutions make her a strong candidate for this award.

 

Minyan Yan | Materials Science | Best Researcher Award

Pro. Minyan Yan | Materials Science | Best Researcher Award

Scopus Profile

Educational Details:

Prof. Minyan Yan earned a PhD in Materials Science and Engineering, specializing in hydrogen storage materials and systems. His doctoral research focused on experimental studies and theoretical modeling of materials aimed at advancing hydrogen storage technologies, specifically the Li-Mg-N-H systems.

Professional Experience

Prof. Yan is currently a faculty member at Taiyuan University of Science and Technology, China. He leads three significant research projects: one funded by the National Natural Science Foundation of China, another supported by the Fundamental Research Program of Shanxi Province, and a third sponsored by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi. With a strong background in both academic research and industry consultancy, Prof. Yan has contributed to three consultancy/industry projects, demonstrating his ability to bridge research and practical applications.

Research Interest

Prof. Yan’s research focuses on hydrogen storage materials, particularly lightweight Li-Mg-N-H systems. His work includes experimental research, theoretical modeling, and developing advanced technologies for improving hydrogen storage performance. He has made key contributions in understanding heat transfer limitations and transition metal effects on hydrogen storage at the electronic structure level, and he has developed a numerical model for Li-Mg-N-H systems that accounts for temperature and pressure fields.

Top Notable Publications

Zhang, H., Yan, M., Gong, C., Zhang, M., & Yan, X. (2024). Effect of V doping on the electronic structure and hydrogen storage performance of the Li-Mg-N-H material. Computational Materials Science, 236, 112850.
Citations: 0

Hu, X., Shen, K., Han, C., Yan, M., & Zhang, M. (2023). Uniform loading of ultrathin MoS2 nanosheets on hollow carbon spheres with mesoporous walls as efficient sulfur hosts for promising lithium-sulfur batteries. Journal of Alloys and Compounds, 965, 171427.
Citations: 6

Xing, Y., Zhang, M., Guo, J., Zhao, M., & Yan, M. (2023). CeO2/Ce2S3 modified carbon nanotubes as efficient cathode materials for lithium-sulfur batteries. Journal of Solid State Electrochemistry, 27(4), 1033–1044.
Citations: 7

Hu, X., Shen, K., Han, C., Yan, M., & Zhang, M. (2023). Ultra-thin MoO2 nanosheets loaded on hollow mesoporous carbon spheres promoting polysulfide adsorption and redox kinetics for lithium-sulfur batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 660, 130881.
Citations: 3

Hu, X., Shen, K., Han, C., Yan, M., & Zhang, M. (2022). Rational design of ultrathin Mo2C/C nanosheets decorated on mesoporous hollow carbon spheres as a multifunctional sulfur host for advanced Li-S batteries. Journal of Alloys and Compounds, 918, 165667.
Citations: 11

Xing, Y., Zhang, M., Guo, J., Hu, X., & Yan, M. (2022). Simple synthesis of PEG@CeO2-CNT/S composite materials as anode materials for lithium-sulfur batteries. Journal of Physics and Chemistry of Solids, 169, 110832.
Citations: 3

Yan, M., Gong, C., Zhang, H., & Zhang, M. (2022). First-Principles Study on the Effect of Ti Doping on Hydrogen Storage Performance of Li-Mg-N-H Materials. Journal of Synthetic Crystals, 51(2), 297–303.
Citations: 1

Yan, M., Sun, F., Liu, X., Wang, S., & Jiang, L. (2016). Hydrogen desorption properties of Mg(NH2)2-2LiH material influenced by ambient air. Chinese Journal of Rare Metals, 40(7), 666–672.
Citations: 0

Yan, M.-Y., Sun, F., Liu, X.-P., Wang, S.-M., & Jiang, L.-J. (2015). Effects of graphite content and compaction pressure on hydrogen desorption properties of Mg(NH2)2-2LiH based tank. Journal of Alloys and Compounds, 628, 63–67.
Citations: 13

Conclusion

In summary, Prof. Minyan Yan’s robust academic background, significant research contributions, successful project leadership, and engagement with industry position him as an exceptional candidate for the Best Researcher Award. His work has a meaningful impact on the field of materials science and addresses pressing challenges in hydrogen storage.