Dr. Muhammad Asif | Optics | Young Scientist Award

Dr. Muhammad Asif | Optics | Young Scientist Award

Postdoctoral Researcher | Shenzhen University | China

Dr. Muhammad Asif is a dedicated researcher with recognized expertise in the field of Optics, contributing actively to advancements in electromagnetic wave absorption and photonic device design. His work centers on computational modeling, simulation, and the development of next-generation Optics-based metamaterials, where a strong emphasis is placed on terahertz, infrared, and visible spectrum applications. With progressive contributions in Optics, he remains focused on enhancing absorber performance, improving device efficiency, and strengthening the scientific foundation of materials engineered for communication, sensing, and energy-harvesting technologies. The research record of Dr. Muhammad Asif reflects meaningful outcomes, including innovative ultra-wideband absorber structures that offer enhanced operational bandwidths, marking substantial relevance to modern Optics-driven industries and scientific frameworks. His publications demonstrate international visibility with multiple works featured in high-impact journals related to Optics, photonic materials, and terahertz absorbers, highlighting sustained productivity and scholarly depth. The collaborative efforts of Dr. Muhammad Asif extend globally across premier laboratories and institutions, reinforcing a dynamic research pipeline in applied Optics and computational photonics. He maintains active associations with advanced laboratories working in radio frequency integration, photonic information technologies, and Optics device engineering, where his contributions support technological growth, academic knowledge transfer, and cross-disciplinary innovation. His research outcomes underscore measurable scientific influence not only within theoretical Optics, but also in material engineering, metasurface development, and practical photonic implementation, thereby supporting the progression of sensing platforms, solar absorption systems, and terahertz technologies. This consistent engagement in Optics has positioned him among emerging scholars contributing significantly to the modern wave-interaction landscape through carefully engineered design strategies and simulation-based discoveries. Google Scholar profile of 76 Citations, 5 h-index, 2 i10-index.

Profile: Google Scholar

Featured Publications

1. Abdullah, M., Younis, M., Sohail, M. T., Wu, S., Zhang, X., Khan, K., Asif, M., & Yan, P. (2024). Recent progress of 2D materials‐based photodetectors from UV to THz waves: Principles, materials, and applications. Small, 20(47), 2402668.

2. Asif, M., Munir, R. M., & Wang, Q., Ouyang, Z. (2024). Graphene-based polarization insensitive structure of ultra-wideband terahertz wave absorber. Optical Materials, 154, 115759.

3. Asif, M., Ali, K., Munir, R. M., Anwar, S., Abdullah, M., Ouyang, Z., & Wang, Q. (2024). Ultra-wideband solar absorber via vertically structured GDPT metamaterials. Solar Energy, 282, 112957.

4. Asif, M., Wang, Q., Ouyang, Z., Lin, M., & Liang, Z. (2023). Ultra-wideband terahertz wave absorber using vertically structured IGIGIM metasurface. Crystals, 14(1), 22.

5. Abdullah, M., Younis, M., Sohail, M. T., Asif, M., Jinde, Y., Peiguang, Y., Junle, Q., ... (2025). Recent advancements in novel quantum 2D layered materials hybrid photodetectors from IR to THz: From principles to performance enhancement strategies. Chemical Engineering Journal, 504, 158917.

Almara Aliyeva | Nanotechnology | Editorial Board Member

Ms. Almara Aliyeva | Nanotechnology | Editorial Board Member

Researcher | Baku State University | Azerbaijan

Ms. Almara Aliyeva is a distinguished researcher whose work demonstrates sustained excellence in Nanotechnology and its diverse scientific applications. Her contributions reflect a deep commitment to advancing Nanotechnology through rigorous investigation, multidisciplinary collaboration, and impactful scholarly output. She has authored numerous publications in reputable journals and has accumulated significant citations that highlight the relevance and influence of her research within the global Nanotechnology community. Through her extensive engagement in projects and collaborative initiatives, Ms. Almara Aliyeva has positioned herself as a respected figure in Nanotechnology research, contributing to scientific progress and technological innovation. Her research activities integrate Nanotechnology with advanced materials development, experimental analysis, and emerging scientific methodologies. This ongoing commitment has strengthened the role of Nanotechnology in solving complex scientific challenges and supporting the development of high performance materials that contribute to technological progress. Her involvement in collaborative research teams further enhances the reach of Nanotechnology by fostering knowledge exchange and encouraging new scientific perspectives. These efforts have enabled her to participate in impactful research that supports societal advancement through Nanotechnology based solutions and innovations. Ms. Almara Aliyevacontinuously contributes to the scientific community through active participation in academic discussions, peer review engagements, and interdisciplinary partnerships. Her work demonstrates the transformative potential of Nanotechnology in modern research environments and emphasizes the importance of integrating Nanotechnology into broader scientific and technological frameworks. Her scholarly activities and contributions strengthen the global understanding of Nanotechnology and reinforce its value in addressing scientific, environmental, and industrial challenges. Through her dedication, Ms. Almara Aliyeva remains an influential contributor to the advancement of Nanotechnology and its expanding role in contemporary research.

Profile: SciProfiles

Featured Publication

1. Rahimli, A., & Jafarov, M. (2025). Effect of nanoparticle concentration on the crystallinity, vibrational dynamics and morphology of PS/TiO₂ nanocomposites. Physical Chemistry Chemical Physics.

2. Rahimli, A., & Jafarov, M. (2025). Effect of nanoparticle concentration on the crystallinity, vibrational dynamics, and morphology of PS/TiO₂ nanocomposites. Physics of the Solid State.