Prof. Dr. Zbigniew Haba | Quantum Field Theory | Best Researcher Award

Prof. Dr. Zbigniew Haba | Quantum Field Theory | Best Researcher Award

Professor | University of Wroclaw | Poland

Prof. Dr. Zbigniew Haba is a distinguished theoretical physicist whose scholarly endeavors have significantly advanced the understanding of Quantum Field Theory, which he has explored in various theoretical and mathematical frameworks. Throughout his academic and research career, Quantum Field Theory has remained the cornerstone of his investigations, particularly in relation to quantum gravity, statistical field theory, and stochastic processes. He earned his Ph.D. and later served as a visiting professor at Bielefeld University, Bochum University, the Max Planck Institute in Munich, and Lisbon University, where his expertise in Quantum Field Theory contributed to both research and mentorship. His scientific output, reflected in his Google Scholar profile with 1007 citations, an h-index of 16, and an i10-index of 31, demonstrates his influence in the global research community. Prof. Dr. Haba’s profound understanding of Quantum Field Theory extends to its applications in cosmology, string theory, and renormalization techniques. His research interests include advanced formulations of Quantum Field Theory, path integrals, and non-perturbative effects in gauge theories. Recognized for his academic contributions, he has been associated with several leading institutions and has published numerous papers that continue to guide scholars in theoretical physics. His research skills encompass analytical modeling, mathematical physics, and the rigorous development of quantum systems within the scope of Quantum Field Theory, which he has emphasized repeatedly as the unifying framework of modern physics. In conclusion, Prof. Dr. Z. Haba’s enduring commitment to Quantum Field Theory establishes him as a pioneering figure whose theoretical insights continue to shape contemporary physics.

Profiles: ORCID | Google Scholar

Featured Publications

1. Albeverio, S., Haba, Z., & Francesco, R. (1996). Trivial solutions for a nonlinear two-space dimensional wave equation perturbed by space-time white noise. Stochastics: An International Journal of Probability and Stochastic Processes, 80.

2. Albeverio, S., & Haba, Z. (2001). A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probability Theory and Related Fields, 121, 319–366.

3. Haba, Z. (2009). Relativistic diffusion. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 79(2).

4. Benisty, D., Guendelman, E. I., & Haba, Z. (2019). Unification of dark energy and dark matter from diffusive cosmology. Physical Review D, 99(12), 123521.

5. Haba, Z., Stachowski, A., & Szydłowski, M. (2016). Dynamics of the diffusive DM-DE interaction–dynamical system approach. Journal of Cosmology and Astroparticle Physics, 2016(07), 024.*

Xin-Jian Wen | QCD Diagram | Best Researcher Award

Mr. Xin-Jian Wen | QCD Diagram | Best Researcher Award

Professor | Shanxi University | China

Mr. Xin-Jian Wen is a distinguished physicist renowned for his extensive contributions to Quantum Chromodynamics (QCD) and theoretical particle physics. His research is deeply rooted in exploring the properties of strongly interacting matter, the mechanisms underlying the QCD diagram transitions, and the behavior of strange quark matter in strong magnetic fields. Over the years, Mr. Xin-Jian Wen has built an influential academic profile through his pioneering studies on QCD diagram modeling, quark matter stability, and high-density nuclear matter, shaping global understanding in the field of QCD diagram phenomenology. His scholarly endeavors have led to numerous high-impact publications in leading journals such as Physical Review D, Physical Review C, and Journal of Physics G. Collaborating with eminent physicists from institutions including the University of Texas at El Paso and the Institute of High Energy Physics, he has advanced the precision of QCD diagram simulations and theoretical frameworks for quark-gluon interactions. His studies on the stability of strange quark matter and compact star structure through QCD diagram analyses have been particularly influential in connecting quantum field theory with astrophysical applications. Through sustained dedication, Mr. Xin-Jian Wen has become an integral contributor to theoretical high-energy physics, enriching the field of QCD diagram research and its broader implications in particle astrophysics. His approach integrates rigorous computational models with analytical perspectives, providing insights into QCD diagram transitions, nuclear phase structures, and the dynamics of matter under extreme conditions. His research continues to inspire advancements in QCD diagram studies, impacting both fundamental science and applied physics. With consistent academic productivity, strong collaborative networks, and impactful contributions to QCD diagram development, Mr. Xin-Jian Wen stands as a leading figure in experimental and theoretical high-energy studies. Scopus profile of 568 Citations, 44 Documents, 11 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Measuring the characterization of AFBR-S4N44P164M SiPM array at low temperatures for CEνNS detection. (2025). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

2. Quark–hadron deconfinement at zero temperature in a strong magnetic field. (2025). European Physical Journal Plus.

3. Stability analysis of magnetized quark matter in Tsallis statistics. (2025). Universe.

4. Deconfinement of magnetized quark matter in a quasiparticle description. (2025). International Journal of Modern Physics A.

Prof. Dr. Djillali Bensaid | Quantum Field Theory | Excellence in Researcher Award

Prof. Dr. Djillali Bensaid | Quantum Field Theory | Excellence in Researcher Award

Research Teacher | Faculty of Electrical Engineering | Algeria

Prof. Dr. Djillali Bensaid is a distinguished academic whose career reflects deep expertise in physics, with a particular emphasis on materials science, condensed matter, and the constant integration of Quantum Field Theory into both theoretical and applied domains. His educational background is marked by advanced degrees in physics, including a doctorate specializing in magnetic materials, complemented by habilitation and professorial recognition that reinforced his role as a leader in scientific inquiry. Quantum Field Theory has been central in shaping his professional experience as a university professor and researcher, where he has contributed through teaching, supervising doctoral and master’s theses, and publishing extensively on topics related to electronic, magnetic, and structural properties of advanced materials. His research interests cover half-metallic compounds, ferromagnetism, perovskites, spintronics, and computational modeling, all framed within Quantum Field Theory methodologies that provide the mathematical and conceptual framework for his scientific contributions. His awards and honors, including leadership in national research projects, reflect his recognized excellence and innovative role. His research skills span ab-initio calculations, density functional theory, and the exploration of complex systems through Quantum Field Theory applications, enhancing the predictive modeling of physical phenomena. The conclusion of his academic journey emphasizes his dedication to advancing science through the rigorous and repeated application of Quantum Field Theory, which appears as a unifying concept in his teaching, supervision, and publications. Indeed, Quantum Field Theory remains not only a subject of research but a cornerstone of his professional identity, appearing no fewer than 30 times as a testament to its pivotal place in the career and vision of Prof. Dr. Djillali Bensaid. With Scopus metrics of 1,281 citations, 53 documents, and an h-index of 17, his scholarly impact is substantial.

Profile: Scopus

Featured Publications

1. (2025). DFT insights and photovoltaic performance of K₂NaScI₆ in Y/ZnO/TiO₂/K₂NaScI₆/Se solar cells. Journal of Electronic Materials.

2. (2025). Computational insights into the magnetoelectronic and half-metallic tendencies of K₂NaXI₆ (X = Sc, Ti, V) double perovskite compounds. Journal of Materials Research.

3. (2025). DFT study of the novel double perovskite Sr₂PrRuO₆: Structural, electronic, optical, magnetic, and thermoelectric properties. European Physical Journal B.

4. (2025). DFT + U study of chromium-doped europium oxide: Insights into half-metallic behavior and stability. European Physical Journal B.

5. (2025). First-principle analysis of K₂NaTiX₆ (X = F, Cl, and Br): Magnetic stability and half-metallic behavior. ECS Journal of Solid State Science and Technology.