Dr. Anca Melintescu | Nuclear Physics | Research Excellence Award

Dr. Anca Melintescu | Nuclear Physics | Research Excellence Award

Senior Scientist First Degree equivalent to Professor | Horia Hulubei National Institute of Physics and Nuclear Engineering | Romania

Dr. Anca Melintescu is an internationally recognized researcher whose work demonstrates sustained excellence in Nuclear Physics with a strong focus on Nuclear Physics applications to environmental systems, radiological impact assessment, and risk modeling. Her expertise in Nuclear Physics integrates advanced mathematical modeling, Nuclear Physics based transfer processes of radionuclides, and Nuclear Physics driven assessment frameworks used at global level. She has authored and coauthored more than forty peer reviewed scientific publications, with extensive citations reflecting the relevance of her Nuclear Physics contributions. Her research collaborations span major international institutions and agencies, where her Nuclear Physics knowledge supports harmonized methodologies, decision support tools, and scientific guidance. Through advisory roles and editorial activities, she has strengthened the global Nuclear Physics research ecosystem and ensured high scientific standards. Her work in Nuclear Physics has delivered measurable societal impact by improving environmental safety, public exposure assessment, and policy relevant decision making. Her sustained leadership and collaboration in Nuclear Physics continue to influence international best practices and scientific innovation. Scopus profile of 519 Citations, 44 Documents, 14 h-index.

Citation Metrics (Scopus)

519
400
300
200
100
0

Citations

519

Documents

44

h-index

14

Citations

Documents

h-index

Featured Publications

Prof. Elvira Rossi | High Energy Physics | Research Excellence Award

Prof. Elvira Rossi | High Energy Physics | Research Excellence Award

Associate Professor in Particle Physics | University of Naples Federico II | Italy

Prof. Elvira Rossi is a leading experimental scientist whose contributions have significantly advanced global High Energy Physics through pioneering research, interdisciplinary collaborations, and influential work within major international laboratories. Her research spans fundamental interactions, precision measurements, detector technologies, artificial intelligence applications, and large-scale data analysis, reinforcing the core pillars of modern High Energy Physics. She has played a major role in collaborations dedicated to High Energy Physics, including long-standing involvement in ATLAS and activities connected to future collider programs, where her work supports advancements in particle detection, trigger systems, calibration studies, and complex reconstruction strategies. Her scientific output reflects deep engagement with High Energy Physics, with impactful publications, extensive citation influence, and a strong presence across collaborative research networks. She has contributed to major discoveries, precision analyses, high-performance computing initiatives, and methodological innovations that benefit the broader High Energy Physics community and society through technological transfer, scientific outreach, and the development of advanced computational frameworks. Her sustained commitment to High Energy Physics, combined with her leadership roles and contributions to detector development and data-driven analysis, highlights her as a prominent figure shaping the future directions of High Energy Physics at the global level. Professional research metrics Scopus profile of 70403 Citations, 1211 Documents, 126 h-index.

Citation Metrics (Scopus)

80000
60000
40000
20000
0

70,403
Citations

1,211
Documents

126
h-index

                                       ■ Citations (Blue)           ■ Documents (Red)            ■ h-index (Green)

Featured Publications

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary | Nuclear Physics | Research Excellence Award

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary | Nuclear Physics | Research Excellence Award

Associate professor | Egyptian Atomic Energy Authority | Egypt

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary is a distinguished researcher recognized for her impactful scientific contributions and advanced work in radiobiology, radiation biochemistry, radioprotection, and translational cancer research within the broader sphere of Nuclear Physics applications. Her research output reflects a strong foundation in experimental radiation science and therapeutic modulation, anchored in Nuclear Physics principles and developed through extensive laboratory, preclinical, and molecular investigations. She has established a significant academic footprint through peer-reviewed publications, collaborative research activities, and innovative projects that support safe and beneficial integration of Nuclear Physics in medicine, health, and radiation-based disease management. Her professional trajectory demonstrates leadership in the interface between biochemical systems and ionizing radiation mechanisms, bringing the precision of Nuclear Physics into cancer therapy, oxidative stress regulation, radiotracer development, radiosensitization, and tissue-protective strategies. Her multidisciplinary approach links biochemical pathways, immune regulation, molecular signaling, and toxicological markers with radiation exposure outcomes, reinforcing the translational value of Nuclear Physics in understanding cellular responses and advancing therapeutic interventions. Through research collaborations across biochemistry, molecular oncology, pharmacology, and imaging sciences, she has contributed to improved diagnostic and therapeutic solutions that benefit public health and global scientific progress. Her publications, experimental investigations, and continuous participation in scientific conferences reflect her commitment to expanding knowledge in Nuclear Physics, supporting the development of new radioprotectants, natural compounds, radiopharmaceuticals, and imaging tools. Her academic service includes research supervision, manuscript review for recognized journals, laboratory and project management, and active contribution to scientific communities working in radiation-linked biomedical innovation. Her work strengthens the strategic role of Nuclear Physics in clinical safety, cancer therapeutics, biological protection, and medical advancement, generating outcomes of scientific and societal importance. Her Google Scholar profile indicates 327 Citations, 12 h-index, 12 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. El Bakary, N. M., Alsharkawy, A. Z., Shouaib, Z. A., & Barakat, E. M. S. (2020). Role of bee venom and melittin on restraining angiogenesis and metastasis in γ-irradiated solid Ehrlich carcinoma-bearing mice. Integrative Cancer Therapies, 19, 1534735420944476.

2. Medhat, A. M., Azab, K. S., Said, M. M., El Fatih, N. M., & El Bakary, N. M. (2017). Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumor Biology, 39(10), 1010428317728480.

3. Hafez, E. N., Moawed, F. S. M., Abdel-Hamid, G. R., & Elbakary, N. M. (2020). Gamma radiation-attenuated Toxoplasma gondii provokes apoptosis in Ehrlich ascites carcinoma-bearing mice generating long-lasting immunity. Technology in Cancer Research & Treatment, 19, 1533033820926593.

4. Azab, K. S., Maarouf, R. E., Abdel-Rafei, M. K., El Bakary, N. M., & Thabet, N. M. (2022). Withania somnifera (Ashwagandha) root extract counteract acute and chronic impact of γ-radiation on liver and spleen of rats. Human & Experimental Toxicology, 41, 09603271221106344.

5. Elbakry, M. M. M., ElBakary, N. M., Hagag, S. A., & Hemida, E. H. A. (2023). Pomegranate peel extract sensitizes hepatocellular carcinoma cells to ionizing radiation, induces apoptosis and inhibits MAPK, JAK/STAT3, β-catenin/NOTCH, and SOCS3 signaling. Integrative Cancer Therapies, 22, 15347354221151021.

Kai-Li Wang | Physics and Astronomy | Young Scientist Award

Mr. Kai-Li Wang | Physics and Astronomy | Young Scientist Award

Postdoctoral Researcher | Soochow University | China

Mr. Kai-Li Wang is a leading researcher whose contributions in Physics and Astronomy have positioned him at the forefront of advanced semiconductor and perovskite device innovation. His work demonstrates a strong command of Physics and Astronomy, especially in areas related to organic and perovskite semiconductor mechanisms, device engineering, and photophysical behavior crucial to next-generation energy technologies. Across more than eighty publications, his research in Physics and Astronomy consistently advances fundamental understanding while delivering high-impact practical outcomes for photovoltaic and optoelectronic systems. His publications in major journals such as Science, JACS, Advanced Materials, Advanced Energy Materials, and Nano Letters reflect exceptional influence within global Physics and Astronomy communities. Mr. Kai-Li Wang’s expertise integrates material design, vacuum-based fabrication strategies, tandem and indoor photovoltaics, and defect passivation concepts technical areas rooted deeply in Physics and Astronomy. Through multidisciplinary collaborations bridging chemistry, nanotechnology, and device engineering, he elevates the role of Physics and Astronomy in solving large-scale energy and sustainability challenges. His work has reshaped modern understanding of perovskite crystallization, interface engineering, charge-transfer pathways, and stability mechanisms, making him a consistent contributor to international advancements in Physics and Astronomy. As a co-inventor on multiple patents and a frequent collaborator with highly cited research groups, Mr. Kai-Li Wang exemplifies the societal value of Physics and Astronomy through innovations aimed at high-efficiency, low-cost, and environmentally responsible energy conversion. His research continues to influence experimental design and industrial translation across the expanding global fields of photovoltaics, semiconductor materials, and applied Physics and Astronomy, reinforcing the discipline’s vital impact on technological progress. Google Scholar profile of 6389 Citations, 39 h-index, 94 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Wang, R., Xue, J., Wang, K. L., Wang, Z. K., Luo, Y., Fenning, D., Xu, G., Nuryyeva, S., … (2019). Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 366(6472), 1509–1513.

2. Igbari, F., Wang, R., Wang, Z. K., Ma, X. J., Wang, Q., Wang, K. L., Zhang, Y., Liao, L. S., … (2019). Composition stoichiometry of Cs₂AgBiBr₆ films for highly efficient lead-free perovskite solar cells. Nano Letters, 19(3), 2066–2073.

3. Xue, J., Wang, R., Chen, X., Yao, C., Jin, X., Wang, K. L., Huang, W., Huang, T., … (2021). Reconfiguring the band-edge states of photovoltaic perovskites by conjugated organic cations. Science, 371(6529), 636–640.

4. Xue, J., Wang, R., Wang, K. L., Wang, Z. K., Yavuz, I., Wang, Y., Yang, Y., Gao, X., … (2019). Crystalline liquid-like behavior: surface-induced secondary grain growth of photovoltaic perovskite thin film. Journal of the American Chemical Society, 141(35), 13948–13953.

5. Phung, N., Félix, R., Meggiolaro, D., Al-Ashouri, A., Sousa e Silva, G., … (2020). The doping mechanism of halide perovskite unveiled by alkaline earth metals. Journal of the American Chemical Society, 142(5), 2364–2374.

Zhen Wang | Nuclear Physics | Research Excellence Award

Mr. Zhen Wang | Nuclear Physics | Research Excellence Award

Associate Professor | China Institute for Radiation Protection | China

Mr. Zhen Wang is a dedicated researcher whose work reflects a strong commitment to advancing Nuclear Physics through practical innovation and scientific rigor. His professional contributions focus on Nuclear Physics applications in nuclear air cleaning technology and radioactive gas purification, where he has played a meaningful role in strengthening safety standards within environments that rely on Nuclear Physics operational systems. Through his continuous involvement in research activities, Mr. Zhen Wang has developed insights that support the progress of experimental and applied Nuclear Physics, especially in areas that intersect environmental protection and radiation control. His engagement with Nuclear Physics has allowed him to participate in collaborative studies that enhance purification mechanisms and improve technological frameworks used in Nuclear Physics laboratories and industrial facilities. He has contributed to research efforts that integrate Nuclear Physics with engineering based solutions, generating outcomes that offer societal benefits by promoting safer handling of radioactive materials. His professional path demonstrates a consistent alignment with Nuclear Physics oriented problem solving, supported by active participation in projects related to environmental radiation management. Mr. Zhen Wang continues to strengthen his expertise in Nuclear Physics by contributing to scientific discussions, sharing research findings, and engaging with multidisciplinary teams that focus on practical improvements within Nuclear Physics systems. His growing scholarly presence supports broader goals in Nuclear Physics and reinforces the importance of developing technologies that protect public health and environmental stability. His ongoing work reflects precision, analytical depth, and a sustained commitment to research advancement within the global Nuclear Physics community. This profile acknowledges his contribution to Nuclear Physics and highlights his continued dedication to meaningful scientific development. Scopus profile of 11 Citations, 3 Documents, 3 h-index.

Profile: Scopus

Featured Publication

1. Study on fire safety assessment of nuclear grade activated carbon. Progress in Nuclear Energy. (2024)

Muhammad Mustafa Dastageer | Physics and Astronomy | Best Researcher Award

Mr. Muhammad Mustafa Dastageer | Physics and Astronomy | Best Researcher Award

Research Assistant | University of Engineering and Technology | Pakistan

Mr. Muhammad Mustafa Dastageer is a dedicated researcher whose work is deeply rooted in the advancing frontiers of Physics and Astronomy. His scientific contributions focus on laser spectroscopy, plasma diagnostics, and machine-learning-assisted analytical techniques, forming a strong foundation for impactful research within the broader domains of Physics and Astronomy. Through his involvement in collaborative projects spanning national and international institutions, he has strengthened the integration of experimental methods with computational intelligence, demonstrating how Physics and Astronomy can bridge fundamental inquiry and applied innovation. Mr. Dastageer has contributed to significant publications addressing biomedical sensing, laser–matter interaction, and materials characterization, with his research appearing in reputable scientific journals. His role in major collaborative efforts, including studies on laser-induced breakdown spectroscopy for medical applications, underscores his commitment to expanding the practical relevance of Physics and Astronomy. His publications highlight rigorous experimental methodology, interdisciplinary coordination, and a clear dedication to scientific advancement. In addition to research excellence, he has actively contributed to scholarly events, conferences, and scientific communities, further reinforcing the global impact of Physics and Astronomy. His participation in academic symposiums and specialized workshops reflects his ongoing effort to promote knowledge exchange and foster innovation. Through these engagements, he contributes to shaping the evolving landscape of Physics and Astronomy, ensuring that theoretical understanding and technical application continue to progress side by side. With a professional trajectory centered on academic rigor, scientific integrity, and international collaboration, Mr. Dastageer remains committed to pushing forward the boundaries of Physics and Astronomy. His work exemplifies how modern research in Physics and Astronomy can meaningfully contribute to society, healthcare, materials science, and technological development. Scopus profile of 2 Citations, 3 Documents, 1 h-index.

Profiles: Google Scholar | ORCID | Scopus

Featured Publications

1. Mustafa, M., Latif, A., Jehangir, M., & Siraj, K. (2022). Nd: YAG laser irradiation consequences on calcium and magnesium in human dental tissues. Lasers in Dental Science, 6(2), 107–115.

2. Mustafa, M., Latif, A., & Jehangir, M. (2022). Laser-induced breakdown spectroscopy and microscopy study of human dental tissues. Electron Microscopy, 1–14.

3. Dastageer, M. M., Siraj, K., Pedarnig, J. D., Zhang, D., Qasim, M., Rahim, M. S. A., ... (2025). From fundamentals of laser-induced breakdown spectroscopy to recent advancements in cancer detection and calcified tissues analysis: An overview (2015–2025). Molecules, 30(21), 4176.

4. Mushtaq, S., Siraj, K., Rahim, M. S. A., Younas, Q., Hussain, B. M., Qasim, M., ... (2025). Analysis of edible silver foils under steady magnetic field by calibration free laser induced breakdown spectroscopy (CF-LIBS). Iranian Journal of Science, 49(3), 889–899.

5. Younas, Q., Siraj, K., Osipowicz, T., Naeem, S., Zhao, Y., Tan, C. C., Bashir, S., ... (2025). Impact of gold ions on nanohardness and various characteristics of G-metal alloy surface. Metals and Materials International, 1–17.

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.

Assist. Prof. Dr. Vladimir A. Pakhotin | Physics and Astronomy | Best Researcher Award

Assist. Prof. Dr. Vladimir A. Pakhotin | Physics and Astronomy | Best Researcher Award

Senior Research Scientist | Ioffe Institute | Russia

Assist. Prof. Dr. Vladimir A. Pakhotin has made significant contributions to the interdisciplinary field of Physics and Astronomy, advancing research in electron emission and the electro-physical properties of polymers. His extensive background in Physics and Astronomy from the Saint-Petersburg State Polytechnic University and the Ioffe Institute laid the foundation for his innovative studies in the emission of charged particles and electrical breakdown phenomena. Throughout his professional journey as a Senior Researcher at the Strength Physics Laboratory, he has exemplified excellence in experimental Physics and Astronomy, merging theoretical insight with practical investigation. His research interest in Physics and Astronomy focuses on understanding the structural behavior of materials under varying electromagnetic conditions, contributing valuable data to polymer physics and electronic material design. Recognized for his prolific scholarly output, with over 150 publications, he stands as a respected figure in Physics and Astronomy. His awards and honors highlight his dedication to advancing material science and Physics and Astronomy innovation. His research skills encompass advanced instrumentation, emission analysis, and material characterization techniques that enhance discoveries in Physics and Astronomy. In conclusion, Assist. Prof. Dr. Vladimir A. Pakhotin’s lifelong pursuit of knowledge continues to inspire new generations of scientists, reinforcing the global impact of Physics and Astronomy research. His Scopus profile of 125 Citations, 28 Documents, 7 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Pakhotin, V. A., Semenov, S. E., & Sudar, N. T. (2025). Increasing the lifetime of polymer dielectrics in an AC field by using phosphorescent dopants: Theoretical justifications and numerical simulation. Journal of Applied Physics.

2. Pakhotin, V. A., & Semenov, S. E. (2024). Redistribution of electric field strength in insulation using electrets. IEEE Transactions on Dielectrics and Electrical Insulation.

3. Semenov, S. E., Sudar, N. T., & Pakhotin, V. A. (2024, October 17). Pulse electrical strength of polymer dielectric films. 2024 International Conference on Electrical Engineering and Photonics (EExPolytech).

4. Pakhotin, V. A., & Semenov, S. E. (2024, September 28). Charge stabilization in corona electrets made of HDPE film due to the formation of deep electron traps during its orientational stretching. Journal of Applied Physics.

5. Tipikin, A. A., Pakhotin, V. A., & Potapov, D. S. (2024, July 3). Technique for automatic profiling of underlying surface electric parameters on the very low frequencies radio path. Proceedings of Telecommunication Universities.

Prof. Nikolai V. Gaponenko | Physics | Best Researcher Award

Prof. Nikolai V. Gaponenko | Physics | Best Researcher Award

Professor | Belarusian State University of Informatics and Radioelectronics  | Belarus

Prof. Nikolai V. Gaponenko, a distinguished figure in physics, serves as Head of the Laboratory of Nanophotonics at the Belarusian State University of Informatics and Radioelectronics, where his extensive contributions to solid-state physics and nanophotonics have gained international recognition. His education in physics laid a robust foundation for pioneering research in optically anisotropic materials and sol-gel synthesis within the physics of photonic band gap structures. Throughout his professional experience, Prof. Gaponenko has led numerous interdisciplinary physics collaborations with global institutes, advancing luminescence technologies and nanostructure fabrication. His physics research encompasses photonic crystals, perovskite nanocomposites, and upconversion luminescence phenomena, with over a hundred high-impact publications and patents that redefine the role of physics in material design. Honored with several research distinctions, he has strengthened Belarus’s scientific presence through innovative physics-based solutions for electronic and photonic applications. His exceptional physics skills include experimental synthesis, spectroscopic analysis, and photonic modeling that bridge theory and engineering in nanophotonics. As an educator and physicist, he integrates practical and theoretical physics with creativity and leadership, inspiring scientific excellence. Prof. Nikolai V. Gaponenko’s career embodies the transformative potential of physics in shaping sustainable technological progress through deep insight, research integrity, and global collaboration.

Profiles: Google Scholar | ORCID

Featured Publications

1. Bogomolov, V. N., Gaponenko, S. V., Germanenko, I. N., Kapitonov, A. M., et al. (1997). Photonic band gap phenomenon and optical properties of artificial opals. Physical Review E, 55(6), 7619.

2. Dorofeev, A. M., Gaponenko, N. V., Bondarenko, V. P., Bachilo, E. E., Kazuchits, N. M., et al. (1995). Erbium luminescence in porous silicon doped from spin‐on films. Journal of Applied Physics, 77(6), 2679–2683.

3. Gaponenko, N. V., Davidson, J. A., Hamilton, B., Skeldon, P., Thompson, G. E., et al. (2000). Strongly enhanced Tb luminescence from titania xerogel solids mesoscopically confined in porous anodic alumina. Applied Physics Letters, 76(8), 1006–1008.

4. Lutich, A. A., Gaponenko, S. V., Gaponenko, N. V., Molchan, I. S., Sokol, V. A., et al. (2004). Anisotropic light scattering in nanoporous materials: A photon density of states effect. Nano Letters, 4(9), 1755–1758.

5. Gaponenko, N. V. (2001). Sol–gel derived films in meso-porous matrices: porous silicon, anodic aluminum and artificial opals. Synthetic Metals, 124(1), 125–130.

Dr. Kammogne Djoum Nana Anicet | Physics and Astronomy | Best Researcher Award

Dr. Kammogne Djoum Nana Anicet | Physics and Astronomy | Best Researcher Award

Assistant Lecturer | African Institute of Mathematical Sciences | Cameroon

Dr. Kammogne Djoum Nana Anicet is a distinguished scholar in Physics and Astronomy whose academic and research journey reflects deep expertise in theoretical condensed matter physics. Having earned his Ph.D. with highest distinction from the University of Dschang, his work in Physics and Astronomy encompasses teaching, research, and numerous publications in top journals such as Physics Letters A and Chinese Journal of Physics. His professional experience includes roles as a teaching assistant at AIMS Cameroon and lecturer at the University of Dschang, where he taught electromagnetism, electrostatics, quantum physics, and solid-state physics—core pillars of Physics and Astronomy. Dr. Kammogne’s research explores quantum transitions, level-crossing phenomena, and spontaneous emission models, all vital areas in modern Physics and Astronomy. His outstanding performance has earned him multiple awards, including Best Researcher recognitions from ScienceFather, Scifat, and WorldTopScientists, along with a Presidential Award for Excellence. His skills in Mathematica, Python, LaTeX, and computational tools like Qutip enhance his research capabilities in Physics and Astronomy. With active participation in international conferences and collaborations, Dr. Kammogne continues to contribute innovative insights to the global Physics and Astronomy community. His dedication, technical proficiency, and analytical acumen define him as a leading researcher advancing frontiers in Physics and Astronomy, where his commitment to knowledge and excellence embodies the essence of scientific achievement and innovation in this dynamic field.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kammogne, A. D., Kenmoe, M. B., & Fai, L. C. (2022). Statistics of interferograms in three-level systems. Physics Letters A, 425, 127872.

2. Kammogne, A. D., Issofa, N., & Fai, L. C. (2024). Non-resonant exponential Nikitin models with decay. Chinese Journal of Physics.

3. Kammogne, A. D., & Fai, L. C. (2025). Spontaneous emission in an exponential model. Chinese Journal of Physics.

4. Tchapda, A. B., Kenmoe, M. B., & Fai, L. C. (2017). Landau-Zener transitions in a qubit/qutrit periodically driven in both longitudinal and transverse directions. arXiv preprint arXiv:1708.04184.

5. Kammogne, A. D. (2025). Effect of spontaneous emission on a tanh model. Chinese Journal of Physics.