Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Prof. Viktor Mykhas’kiv | Computational Methods | Best Researcher Award

Leading Scientific Researcher | Institute for Applied Problemss of Mechanics and Mathematics | Ukraine

Prof. Viktor Mykhas’kiv is a distinguished researcher at the Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine. His academic achievements include a Doctor of Science in Physics and Mathematics and a professorship in Mechanics of Deformable Solids. His extensive expertise in Computational Methods spans across Computational Mechanics, Materials Science, Structural Mechanics, and Multiscale Mathematical Modeling. Through his pioneering work, he has applied Computational Methods to study wave propagation, metamaterials, and nanomechanics, advancing knowledge in multiple scattering theory. His research leadership in international collaborations under INTAS, STCU, DAAD, DFG, and Fulbright programs highlights his ability to integrate Computational Methods within global scientific frameworks. As a team leader and project manager, he has promoted innovative Computational Methods in the investigation of elastic metamaterials and complex lattice structures. He has published widely, authoring over seventy-six Scopus-indexed papers, two books, and contributing to editorial boards of international journals like Mathematical Methods and Physicomechanical Fields. His commitment to excellence in Computational Methods is reflected in his role as a member of the European Structural Integrity Society. He has also served as a visiting researcher in the USA and Germany, applying Computational Methods to solve advanced mechanical and physical problems. His awards and honors recognize his groundbreaking use of Computational Methods in applied mechanics and theoretical modeling. With remarkable research skills and professional integrity, Prof. Viktor Mykhas’kiv continues to contribute significantly to global scientific progress. Scopus profile of 474 Citations, 76 Documents, 14 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Stankevych, V. Z., & Mykhas’kiv, V. V. (2023). Intensity of dynamic stresses of longitudinal shear in a periodically layered composite with penny-shaped cracks. Journal of Mathematical Sciences, 269(2), 268–280.

2. Mykhas’kiv, V. V., & Stasyuk, B. M. (2021). Effective elastic moduli of short-fiber composite with sliding contact conditions at interfaces. Mechanics of Composite Materials, 57(6), 845–854.

3. Mykhas’kiv, V., & Stankevych, V. (2019). Elastodynamic problem for a layered composite with penny-shaped crack under harmonic torsion. ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik, 99(8), e201800193.

4. Mykhas’kiv, V. V., Zhbadynskyi, I. Y., & Zhang, C. (2019). On propagation of time-harmonic elastic waves through a double-periodic array of penny-shaped cracks. European Journal of Mechanics - A/Solids, 74, 68–77.

5. Zhbadynskyi, I. Y., & Mykhas’kiv, V. V. (2018). Acoustic filtering properties of 3D elastic metamaterials structured by crack-like inclusions. Proceedings of the International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED), 54–59.

Dr. Bahadir Kopcasiz | Computational Methods | Best Researcher Award

Dr. Bahadir Kopcasiz | Computational Methods | Best Researcher Award

Assistant Professor | Istanbul Gelisim University | Turkey

Dr. Bahadir Kopcasiz is an accomplished academic whose expertise centers on Computational Methods, with strong emphasis on nonlinear partial differential equations, soliton theory, symbolic and semi-analytical analysis, and advanced mathematical modeling. He earned his Ph.D. in Mathematics from Bursa Uludag University, preceded by a Master’s in Mathematics from Yeditepe University and a Bachelor’s from Karadeniz Technical University, building a solid foundation for his contributions in Computational Methods. Currently serving as an Assistant Professor at Istanbul Gelisim University, he actively teaches courses such as Differential Equations, Statistics, Probability, and Numerical Analysis, integrating Computational Methods into both undergraduate and graduate programs. His research primarily focuses on soliton solutions in nonlinear Schrödinger-type systems, dynamical structures in quantum physics, and the development of innovative Computational Methods to study complex dynamical systems, with numerous publications in high-impact journals including Archives of Computational Methods in Engineering, Nonlinear Dynamics, and Symmetry. He has also presented extensively at international conferences, showcasing advancements in Computational Methods for applied physics and engineering. Among his recognitions, he received the Best Researcher Award at the International Research Awards on Composite Materials and academic incentive awards from Istanbul Gelisim University, which highlight his outstanding scholarly contributions in Computational Methods. His research skills are distinguished by mastery of symbolic computation, semi-analytical modeling, and integration of Computational Methods with machine learning for dynamic system optimization, as evidenced by his involvement in national projects. In conclusion, Dr. Bahadir Kopcasiz exemplifies excellence in academia through his dedication to advancing Computational Methods, innovative problem-solving, impactful publications, and mentorship, establishing himself as a valuable contributor to mathematics, physics, and engineering research. His Google Scholar citations 337, h-index 12, i10-index 14, showcasing measurable research impact.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kopçasız, B., & Yaşar, E. (2022). The investigation of unique optical soliton solutions for dual-mode nonlinear Schrödinger’s equation with new mechanisms. Journal of Optics, 1–15.

2. Kopçasız, B., & Yaşar, E. (2022). Novel exact solutions and bifurcation analysis to dual-mode nonlinear Schrödinger equation. Journal of Ocean Engineering and Science.

3. Kopçasız, B., & Yaşar, E. (2024). Dual-mode nonlinear Schrödinger equation (DMNLSE): Lie group analysis, group invariant solutions, and conservation laws. International Journal of Modern Physics B, 38(02), 2450020.

4. Kopçasız, B. (2024). Qualitative analysis and optical soliton solutions galore: Scrutinizing the (2+1)-dimensional complex modified Korteweg–de Vries system. Nonlinear Dynamics, 112(23), 21321–21341.

5. Kopçasız, B., Seadawy, A. R., & Yaşar, E. (2022). Highly dispersive optical soliton molecules to dual-mode nonlinear Schrödinger wave equation in cubic law media. Optical and Quantum Electronics, 54(3), 194.