Homnath luitel | Condensed Matter Physics | Young Scientist Award

Dr. Homnath luitel | Condensed Matter Physics | Young Scientist Award

Assistant Professor at Nar Bahadur Bhandari Government College, Tadong , Gangtok, under education department, Govt. Of Sikkim, India

Dr. Homnath Luitel is an accomplished physicist and educator 👨‍🏫 with a diverse academic and research background in condensed matter physics and geophysics. With a PhD from the Homi Bhabha National Institute (conducted at VECC, Kolkata), he has delved deeply into the quantum-level behavior of materials. Currently serving as an Assistant Professor in the Education Department, Government of Sikkim 🇮🇳, and most recently a Post-Doctoral Research Fellow at the School of Physics, Wits University 🇿🇦, he exemplifies a blend of academic excellence and practical expertise. His work spans cutting-edge domains like DMS, spintronics, magnetism, and Himalayan slope stability 🏔️. Honored with multiple awards including Best Research Contribution (HBNI, 2018) and recognitions by Elsevier and Taylor & Francis 🏆, he’s also a national-level exam qualifier (GATE, JEST, IIT-JAM). Dr. Luitel continues to inspire with his commitment to science, mentorship, and interdisciplinary innovation. 🌟

Professional Profile 

Orcid

Scopus

Google Scholar

🎓 Education

Dr. Homnath Luitel’s academic path reflects a consistent pursuit of excellence 📚. He earned his B.Sc. (Honours) from Sikkim Government College under Sikkim University, followed by an M.Sc. in Physics from Sikkim University 🧠. His passion led him to complete a post-M.Sc. research course at the prestigious VECC, Kolkata, which paved the way for his PhD at Homi Bhabha National Institute, Mumbai, with his research carried out at VECC 🧪. Along the way, he demonstrated outstanding academic merit by qualifying multiple national exams such as IIT-JAM, GATE, JEST, and SLET-NE 🎖️. This rigorous and progressive education laid a strong foundation for his foray into high-impact research. His early education through CBSE also reflects a consistent academic focus right from school days. From the Eastern Himalayas to national research hubs, Dr. Luitel’s educational journey bridges regions and research ecosystems seamlessly. 🌐

🧑‍🏫 Professional Experience

Dr. Luitel’s professional career is both impactful and versatile, merging teaching with pioneering research 🏫🔬. Since 2019, he has been nurturing minds as an Assistant Professor in the Education Department, Government of Sikkim, and currently contributes his expertise to the Department of Physics at Nar Bahadur Bhandari Government College, Tadong. In 2024, his research took an international turn with a Post-Doctoral Fellowship at the School of Physics, University of the Witwatersrand, South Africa 🌍. His teaching is enriched by hands-on research in condensed matter physics and functional materials, allowing students to gain both theoretical insights and experimental understanding. His lab-based expertise includes operating SQUIDs, dilution fridges, and various spectroscopy and characterization tools ⚙️. With a clear passion for both learning and imparting knowledge, Dr. Luitel exemplifies the modern-day scholar who balances academia, research, and mentorship with dedication. 🎓📈

🔬 Research Interest

Dr. Luitel’s research interests are rooted in the intricate physics of materials and earth systems 🌌🌍. In condensed matter physics, his work focuses on defects in solids, dilute magnetic semiconductors (DMS), magnetism, spintronics, and diamond-based functional materials 💎🧲. His expertise with advanced characterization tools like PAS, SQUID, and DFT enables him to probe materials at atomic scales, uncovering phenomena vital to future electronics and quantum computing 🖥️. Beyond materials, he explores geophysical challenges such as slope stability and subsurface profiling in the Himalayan terrain using electrical resistivity surveys (ERS) and geotechnical methods ⛰️. His interdisciplinary approach allows him to connect quantum-scale phenomena with macroscale natural systems, offering unique insights for both applied science and sustainable development. Dr. Luitel’s dual engagement with the physical and geophysical domains reflects a rare scientific breadth and a drive to address both fundamental and societal challenges. 🌟

🏅 Awards and Honors

Dr. Homnath Luitel has been the recipient of multiple prestigious recognitions that celebrate his research prowess and academic contributions 🏆. He earned the Best Research Contribution Award at HBNI’s RSM in 2018 and the Best Research Award in the theme Science, Technology, and Society at the 6th Bharatiya Vigyan Sammelan 2023 in Gujarat 🥇. As a recognized reviewer for renowned journals including Philosophical Magazine (Taylor & Francis), JMMM, and Computational Condensed Matter (Elsevier), his peer-review expertise is acknowledged internationally 📑🌐. He was also invited as a Resource Person and Jury Member for the Young Scientist Conference at IISF 2022, hosted by India’s Department of Biotechnology and allied national science agencies 👨‍⚖️🔬. His success in competitive national exams like GATE, JEST, and SLET further showcases his academic excellence. These honors not only mark his scientific impact but also his role in mentoring and evaluating emerging talent in India’s science landscape.

Publications Top Notes 

1. First-principles study of magnetic properties of the transition metal ion-doped methylammonium lead bromide

  • Authors: Homnath Luitel

  • Year: 2022

  • DOI: 10.1142/s0217979222502022

  • Source: International Journal of Modern Physics B

  • Summary: This study employs first-principles calculations to investigate the magnetic properties of methylammonium lead bromide (MAPbBr₃) doped with transition metal ions. The research aims to understand how doping influences the magnetic behavior of this perovskite material, which is significant for potential applications in spintronics.


2. Half-metallic ferromagnetism in molybdenum doped methylammonium lead halides (MAPbX₃, X = Cl, Br, I) system: First-principles study

  • Authors: Homnath Luitel

  • Year: 2021

  • DOI: 10.1016/j.jmmm.2020.167463

  • Source: Journal of Magnetism and Magnetic Materials

  • Summary: The paper explores the electronic and magnetic properties of molybdenum-doped methylammonium lead halides using first-principles calculations. The findings suggest that such doping can induce half-metallic ferromagnetism, making these materials promising candidates for spintronic devices.


3. Room-temperature ferromagnetism in boron-doped oxides: a combined first-principle and experimental study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1080/09500839.2020.1733122

  • Source: Philosophical Magazine Letters

  • Summary: This study combines experimental techniques and first-principles calculations to investigate room-temperature ferromagnetism in boron-doped oxides. The research provides insights into the mechanisms driving ferromagnetism in these materials, which are relevant for spintronic applications.


4. NMR study of defect-induced magnetism in methylammonium lead iodide perovskite

  • Authors: Bilwadal Bandyopadhyay, Homnath Luitel, Sayantan Sil, Joydeep Dhar, Mahuya Chakrabarti, Palash Nath, Partha P. Ray, Dirtha Sanyal

  • Year: 2020

  • DOI: 10.1103/PhysRevB.101.094417

  • Source: Physical Review B

  • Summary: The paper presents nuclear magnetic resonance (NMR) studies on methylammonium lead iodide perovskite, revealing that defects such as iodine and lead vacancies can induce magnetism. The findings highlight the role of structural defects in influencing the magnetic properties of perovskite materials.


5. Ferromagnetic ordering in cobalt doped methylammonium lead bromide: An ab-initio study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.cocom.2019.e00444

  • Source: Computational Condensed Matter

  • Summary: This ab-initio study investigates the magnetic properties of cobalt-doped methylammonium lead bromide. The research demonstrates that cobalt doping can lead to ferromagnetic ordering, suggesting potential applications in spintronic devices.


6. Ferromagnetic property of copper doped ZnO: a first-principles study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.cocom.2020.e00455

  • Source: Computational Condensed Matter

  • Summary: The study uses first-principles calculations to explore the ferromagnetic properties of copper-doped ZnO. The results indicate that copper doping induces ferromagnetism in ZnO, which is significant for the development of dilute magnetic semiconductors.


7. Half metallic ferromagnetic and optical properties of ruthenium-doped zincblende ZnS: A first principles study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.jpcs.2019.109175

  • Source: Journal of Physics and Chemistry of Solids

  • Summary: This paper investigates the electronic, magnetic, and optical properties of ruthenium-doped zincblende ZnS using first-principles methods. The findings suggest that such doping can result in half-metallic ferromagnetism, enhancing the material’s suitability for spintronic applications. 


8. Defect induced room temperature ferromagnetism in methylammonium lead iodide perovskite

  • Authors: Sayantan Sil, Homnath Luitel, Mahuya Chakrabarty, Partha P. Ray, Joydeep Dhar, Bilwadal Bandyopadhyay, Dirtha Sanyal

  • Year: 2020

  • DOI: 10.1016/j.physleta.2020.126278

  • Source: Physics Letters A

  • Summary: The research combines experimental observations and theoretical calculations to demonstrate that defects, particularly iodide vacancies, can induce room-temperature ferromagnetism in methylammonium lead iodide perovskite. This highlights the potential of defect engineering in tailoring magnetic properties of perovskite material.


9. Enhanced stability and ferromagnetic property in transition metals co-doped rutile TiO₂

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.jpcs.2020.109582

  • Source: Journal of Physics and Chemistry of Solids

  • Summary: This study explores the effects of co-doping rutile TiO₂ with transition metals on its structural stability and magnetic properties. The results indicate that co-doping enhances both the stability and ferromagnetic behavior of TiO₂, making it a promising material for spintronic applications.


10. Magnetic properties of transition metal doped SnO₂: A detailed theoretical study

  • Authors: Homnath Luitel

  • Year: 2019

  • DOI: 10.1016/j.cocom.2019.e00393

  • Source: Computational Condensed Matter

  • Summary: The paper presents a theoretical investigation into the magnetic properties of SnO₂ doped with various transition metals. The findings provide insights into how different dopants influence the magnetic behavior of SnO₂, which is valuable for designing materials with desired magnetic properties.

Conclusion 

In sum, Dr. Homnath Luitel stands out as a dynamic physicist, dedicated educator, and interdisciplinary researcher whose work spans from the quantum to the geophysical 🌐. With a solid foundation in theoretical and experimental physics, his academic journey from the Himalayan region to global research hubs showcases both resilience and brilliance 🌄🔭. He continues to bridge high-end research with grassroots teaching, inspiring young minds while contributing to advancements in material science, spintronics, and sustainable geoscience. Recognized both nationally and internationally for his research and review contributions, Dr. Luitel is a shining example of scholarly excellence 🌟. His technical toolkit, spanning DFT simulations to SQUID operations and ERS surveys, further demonstrates his rare combination of skills and adaptability 🔧🔬. As he progresses in his career, his vision of science as a tool for understanding both the smallest particles and the largest landscapes remains an inspiration for future generations. 💡🌍

Joshua Benjamin | Physics | Best Researcher Award

Mr. Joshua Benjamin | Physics | Best Researcher Award

Lagos Nigeria at TYDACOMM Nigeria Limited, Nigeria

benjamin, joshua olamide is a dedicated scholar and researcher passionate about space physics, ionospheric studies, and space weather. He holds a first-class degree in pure and applied physics from Ladoke Akintola University of Technology and a distinction in space physics from the African University of Science and Technology. With experience in RF network planning and optimization, teaching, and research, he combines technical expertise with strong analytical skills. Proficient in MATLAB, Microsoft Office, and data analysis tools, he is committed to innovation, leadership, and academic excellence. His research contributes to understanding ionospheric models and their impact on space weather. 🚀📡

Professional Profile

Education & Experience 🎓💼

  • [2022] MSc in Space Physics (Distinction) – African University of Science and Technology 📡
  • [2019] B.Tech in Pure and Applied Physics (First Class) – Ladoke Akintola University of Technology 🔬
  • [2023 – Present] RF Network Planning & Field Test Engineer – TYDACOMM Nigeria Limited 📶
  • [2020 – 2021] NYSC Mathematics & Economics Teacher – Jofegal International School 📚
  • [2018] Internship at Perfect Seven Solar Company – Solar System Maintenance ☀️
  • [2011 – 2012] Mathematics Teacher – Fountain of Knowledge Group of School 📏

Professional Development 📖🔍

benjamin, joshua olamide has actively participated in multiple international colloquiums and workshops related to space science, GNSS, and ionospheric studies. He has certifications in health, safety, and environment (HSE Levels 1-3) and has completed training in soft skills, entrepreneurship, and critical thinking. His involvement in research and development, coupled with hands-on experience in field testing, data collection, and RF network optimization, showcases his versatility. Passionate about academic excellence, he regularly engages in professional training, leadership roles, and mentorship programs to enhance his expertise in space physics and its applications. 🌍🛰️

Research Focus 🔬🌌

benjamin, joshua olamide specializes in ionospheric physics, space weather, and solar-terrestrial interactions. His research explores the global climatological performance of ionospheric models using Swarm satellite electron density measurements, evaluating their accuracy and implications for GNSS and communication systems. He has worked on latitudinal electron density profiles, comparing SWARM measurements with IRI models, and studying biophysics applications. His goal is to improve predictive models for space weather impacts on Earth, ensuring the safety and reliability of communication and navigation technologies. His research contributes to scientific advancements in space physics and atmospheric studies. 🌞🌍📡

Awards & Honors 🏆🎖️

  • [2022] Best Graduating Student – Institute of Space Science and Engineering 🏅
  • [2022] Best Graduating Student – Department of Space Physics 🏆
  • [2019] Akinrogun Trust Fund Award 💰
  • [2019] Best WAEC Result – New Era High School 🏅
  • [2007] One of the Best Junior WAEC Results – Greater Tomorrow College 🎓

Publication Top Notes

  1. “Investigation of the global climatologic performance of ionospheric models utilizing in-situ Swarm satellite electron density measurements”
    This paper was published in Advances in Space Research, Volume 75, Issue 5, pages 4274-4290, in 2025. The authors are:

    • D. Okoh
    • C. Cesaroni
    • J.B. Habarulema
    • Y. Migoya-Orué
    • B. Nava
    • L. Spogli
    • B. Rabiu
    • J. Benjamin

    The study offers a comprehensive investigation into the climatologic performance of three ionospheric models when compared to in-situ measurements from Swarm satellites. The models evaluated are the International Reference Ionosphere (IRI), NeQuick, and a 3-dimensional electron density model based on artificial neural network training of COSMIC satellite radio occultation measurements (3D-NN). The findings indicate that while all three models provide fairly accurate representations of the Swarm measurements, the 3D-NN model consistently performed better across various conditions.

  2. “Global Comparison of Instantaneous Electron Density Latitudinal Profiles from SWARM Satellites and IRI Model”
    This paper was published in Advances in Space Research in 2025. The authors are:

    • J.O. Benjamin
    • D.I. Okoh
    • B.A. Rabiu

    This study focuses on comparing instantaneous electron density latitudinal profiles obtained from Swarm satellites with predictions from the IRI model. The comparison aims to assess the accuracy of the IRI model in representing real-time electron density variations observed by the Swarm mission.

For full access to these publications, you may consider visiting the publisher’s website or accessing them through academic databases such as IEEE Xplore or ScienceDirect. If you are affiliated with an academic institution, you might have institutional access to these resources.

Conclusion

Benjamin, joshua olamide stands out as a promising researcher in space physics, with notable contributions to ionospheric studies, climatology models, and research-driven technological applications. His exceptional academic achievements, research output, leadership roles, and technical expertise position him as a deserving candidate for the Best Researcher Award.

Bilal Ramzan | Physics | Best Researcher Award

Dr. Bilal Ramzan | Physics and Astronomy | Best Researcher Award

Assistant Professor at University of Management and Technology Lahore Pakistan, Pakistan.

Dr. Bilal Ramzan is a distinguished astrophysicist and academic affiliated with the University of Agriculture, Faisalabad, Pakistan. As an HEC-approved Ph.D. supervisor, he has made significant contributions to the fields of astrophysics and space sciences. His research primarily focuses on cosmic rays, astrophysical plasma, and interstellar medium dynamics. With a strong academic background and extensive publication record, Dr. Ramzan has established himself as a leading researcher in his domain. He has collaborated with esteemed international scholars and presented his findings at global conferences. His work is widely cited, reflecting its impact on the scientific community. Dr. Ramzan is also deeply involved in mentoring young researchers, guiding them in theoretical and computational astrophysics. His dedication to advancing space sciences in Pakistan and beyond highlights his commitment to academic excellence and scientific discovery.

Professional Profile:

Education

Dr. Bilal Ramzan has a robust academic background, with a Ph.D. in Astronomy and Astrophysics from the Graduate Institute of Astronomy, National Central University, Taiwan, where he graduated in 2021 with a GPA of 3.4/4.0. He holds a Master’s degree in Physics from COMSATS Institute of Information and Technology, Lahore, Pakistan, completed in 2014, and a Bachelor’s degree in Physics from the same institution, obtained in 2011. Additionally, he pursued a Bachelor’s in Education from the University of Education, Lahore, in 2012. His early education includes pre-engineering studies at Nishtar College for Boys, Lahore, and matriculation from Nishtar School for Boys. His strong educational foundation in physics and astrophysics has equipped him with the necessary knowledge and skills to contribute significantly to space sciences and interstellar research.

Professional Experience

Dr. Bilal Ramzan is currently affiliated with the University of Agriculture, Faisalabad, Pakistan, where he serves as a researcher and academic mentor. His role as an HEC-approved Ph.D. supervisor enables him to guide doctoral candidates in cutting-edge astrophysical research. He has an extensive research background in cosmic-ray physics, astrophysical fluid dynamics, and magnetohydrodynamics. Dr. Ramzan has actively participated in numerous international conferences, presenting his findings on cosmic-ray-driven outflows and galactic evolution. His experience extends to collaborative projects with leading space research institutes, where he has contributed to numerical simulations and theoretical modeling of interstellar phenomena. His expertise is sought after for peer reviews, and he serves as a referee for reputed scientific journals in astrophysics. His professional career is marked by a commitment to scientific innovation, interdisciplinary collaboration, and academic leadership.

Research Interest

Dr. Bilal Ramzan’s research interests lie in the study of cosmic rays, astrophysical plasmas, interstellar medium dynamics, and space weather phenomena. He explores the impact of cosmic rays on galactic evolution, particularly in the formation of outflows and winds. His work delves into the behavior of astrophysical fluids under extreme conditions, utilizing magnetohydrodynamic (MHD) models to simulate cosmic-ray interactions. Dr. Ramzan is also interested in the applications of deep learning and quantum computing in astrophysics, focusing on algorithmic approaches to understanding space-time structures such as wormholes. His research integrates computational astrophysics with observational data, aiming to provide deeper insights into cosmic-ray propagation and the thermodynamic behavior of interstellar clouds. Through his studies, he seeks to unravel the fundamental mechanisms governing high-energy astrophysical processes.

Research Skills

Dr. Bilal Ramzan possesses advanced research skills in numerical simulations, theoretical modeling, and data analysis in astrophysics. His expertise in magnetohydrodynamics (MHD) allows him to develop computational models for cosmic-ray interactions and plasma dynamics. He is proficient in coding and utilizing high-performance computing techniques to simulate astrophysical environments. Dr. Ramzan is skilled in analyzing observational data from space telescopes and ground-based observatories, correlating theoretical models with real-world astronomical phenomena. His familiarity with deep learning and quantum algorithms enables him to explore innovative approaches in astrophysical research. He also has strong technical writing skills, with a track record of publishing in high-impact scientific journals. His ability to synthesize complex theoretical concepts into tangible research findings showcases his analytical acumen and scientific rigor.

Awards and Honors

Dr. Bilal Ramzan has received multiple recognitions for his contributions to astrophysical research. He has been invited to present his work at prestigious international conferences, including the COSPAR Scientific Assemblies and ASROC Meetings. His publications in renowned journals such as Astrophysical Journal, Astronomy & Astrophysics, and Scientific Reports reflect the high quality and impact of his research. His contributions to understanding cosmic-ray-driven outflows have been acknowledged by the scientific community, leading to collaborative opportunities with leading researchers. As an HEC-approved Ph.D. supervisor, he has also been recognized for his role in mentoring young scientists and advancing astrophysical research in Pakistan. His work continues to shape the field, earning him accolades for scientific excellence and academic leadership.

Publication Top Notes

  1. Galactic outflows in different geometries
    • Authors: Majeed, U., Ramzan, B.
    • Year: 2025
  2. A fluid approach to cosmic-ray modified shocks
    • Authors: Ramzan, B., Qazi, S.N.A., Salarzai, I., Rasheed, A., Jamil, M.
    • Year: 2024
    • Citations: 1
  3. The formation of invariant optical soliton structures…
    • Authors: Faridi, W.A., Iqbal, M., Ramzan, B., Akinyemi, L., Mostafa, A.M.
    • Year: 2024
    • Citations: 18
  4. Magnetoacoustics and magnetic quantization of Fermi states in relativistic plasmas
    • Authors: Iqbal, A., Rasheed, A., Fatima, A., Ramzan, B., Jamil, M.
    • Year: 2024
  5. Deep learning and quantum algorithms approach to investigating the feasibility of wormholes: A review
    • Authors: Rahmaniar, W., Ramzan, B., Ma’arif, A.
    • Year: 2024
    • Citations: 1
  6. Determination of the optical properties of tungsten trioxide thin film…
    • Authors: Adnan, M., Jamil, M.I., Ramzan, B., Ahmad, A., Ghani, M.U.
    • Year: 2024
  7. Propagation of dust lower hybrid wave in dusty magneto dense plasma…
    • Authors: Yaseen, A., Mir, Z., Ramzan, B.
    • Year: 2024
  8. Continuous solutions of cosmic-rays and waves in astrophysical environments
    • Authors: Irshad, K., Ramzan, B., Qazi, S.N.A., Rasheed, A., Jamil, M.
    • Year: 2023
    • Citations: 1
  9. Transonic plasma winds with cosmic-rays and waves
    • Authors: Ramzan, B., Mir, Z., Rasheed, A., Jamil, M.
    • Year: 2023
    • Citations: 2
  10. Kelvin-Helmholtz instability in magnetically quantized dense plasmas
  • Authors: Rasheed, A., Nazir, A., Fatima, A., Kiran, Z., Jamil, M.
  • Year: 2023

Conclusion

Dr. Bilal Ramzan’s remarkable contributions to astrophysics, his extensive publication record, and his commitment to academic mentorship make him a strong contender for the Best Researcher Award. His expertise in cosmic rays, space plasmas, and astrophysical fluid dynamics is evident in his high-impact research and international collaborations. His ability to integrate computational techniques with observational astrophysics highlights his innovative approach to scientific inquiry. While his achievements are significant, continued interdisciplinary collaborations and the pursuit of larger research grants could further enhance his influence in the field. Overall, Dr. Ramzan stands out as a leading researcher whose work is shaping the future of space science.