Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary | Nuclear Physics | Research Excellence Award

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary | Nuclear Physics | Research Excellence Award

Associate professor | Egyptian Atomic Energy Authority | Egypt

Assoc. Prof. Dr. Nermeen Mohamed Sayed Ahmed Badr Elbakary is a distinguished researcher recognized for her impactful scientific contributions and advanced work in radiobiology, radiation biochemistry, radioprotection, and translational cancer research within the broader sphere of Nuclear Physics applications. Her research output reflects a strong foundation in experimental radiation science and therapeutic modulation, anchored in Nuclear Physics principles and developed through extensive laboratory, preclinical, and molecular investigations. She has established a significant academic footprint through peer-reviewed publications, collaborative research activities, and innovative projects that support safe and beneficial integration of Nuclear Physics in medicine, health, and radiation-based disease management. Her professional trajectory demonstrates leadership in the interface between biochemical systems and ionizing radiation mechanisms, bringing the precision of Nuclear Physics into cancer therapy, oxidative stress regulation, radiotracer development, radiosensitization, and tissue-protective strategies. Her multidisciplinary approach links biochemical pathways, immune regulation, molecular signaling, and toxicological markers with radiation exposure outcomes, reinforcing the translational value of Nuclear Physics in understanding cellular responses and advancing therapeutic interventions. Through research collaborations across biochemistry, molecular oncology, pharmacology, and imaging sciences, she has contributed to improved diagnostic and therapeutic solutions that benefit public health and global scientific progress. Her publications, experimental investigations, and continuous participation in scientific conferences reflect her commitment to expanding knowledge in Nuclear Physics, supporting the development of new radioprotectants, natural compounds, radiopharmaceuticals, and imaging tools. Her academic service includes research supervision, manuscript review for recognized journals, laboratory and project management, and active contribution to scientific communities working in radiation-linked biomedical innovation. Her work strengthens the strategic role of Nuclear Physics in clinical safety, cancer therapeutics, biological protection, and medical advancement, generating outcomes of scientific and societal importance. Her Google Scholar profile indicates 327 Citations, 12 h-index, 12 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. El Bakary, N. M., Alsharkawy, A. Z., Shouaib, Z. A., & Barakat, E. M. S. (2020). Role of bee venom and melittin on restraining angiogenesis and metastasis in γ-irradiated solid Ehrlich carcinoma-bearing mice. Integrative Cancer Therapies, 19, 1534735420944476.

2. Medhat, A. M., Azab, K. S., Said, M. M., El Fatih, N. M., & El Bakary, N. M. (2017). Antitumor and radiosensitizing synergistic effects of apigenin and cryptotanshinone against solid Ehrlich carcinoma in female mice. Tumor Biology, 39(10), 1010428317728480.

3. Hafez, E. N., Moawed, F. S. M., Abdel-Hamid, G. R., & Elbakary, N. M. (2020). Gamma radiation-attenuated Toxoplasma gondii provokes apoptosis in Ehrlich ascites carcinoma-bearing mice generating long-lasting immunity. Technology in Cancer Research & Treatment, 19, 1533033820926593.

4. Azab, K. S., Maarouf, R. E., Abdel-Rafei, M. K., El Bakary, N. M., & Thabet, N. M. (2022). Withania somnifera (Ashwagandha) root extract counteract acute and chronic impact of γ-radiation on liver and spleen of rats. Human & Experimental Toxicology, 41, 09603271221106344.

5. Elbakry, M. M. M., ElBakary, N. M., Hagag, S. A., & Hemida, E. H. A. (2023). Pomegranate peel extract sensitizes hepatocellular carcinoma cells to ionizing radiation, induces apoptosis and inhibits MAPK, JAK/STAT3, β-catenin/NOTCH, and SOCS3 signaling. Integrative Cancer Therapies, 22, 15347354221151021.

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Professor of Emeritus | Institute of Science Tokyo | Japan

Prof. Dr. Kyosuke Ono is an esteemed physicist renowned for his pioneering contributions to Standard Model Physics and applied tribology. His distinguished career at the Tokyo Institute of Technology, where he served as a professor and later as an emeritus scholar, is marked by extensive research in Standard Model Physics that bridges fundamental particle behavior with mechanical system dynamics. Throughout his tenure, Prof. Dr. Ono made significant advances in understanding sub-monolayer lubricant physics within the head-disk interface, offering crucial insights that align the precision of Standard Model Physics principles with nanoscale mechanical phenomena. His scholarly work reflects deep engagement with the continuum mechanics framework and its extension into sub-monolayer film theory, where Standard Model Physics served as the theoretical backbone guiding molecular interactions and force distributions at the atomic level. Prof. Dr. Ono’s prolific academic output includes numerous publications in leading international journals such as Tribology Letters, ASME Transactions on Tribology, and ASME Transactions on Applied Mechanics. His h-index of 26 demonstrates substantial influence and citation within the global Standard Model Physics and mechanical engineering communities. His collaborations with the Storage Research Consortium in Japan and industrial contributions as a technical advisor for hard disk drive development underscore his ability to translate Standard Model Physics insights into practical innovations with lasting industrial relevance. Furthermore, as an editorial board member for Lubricants (EDPI), he has consistently advanced the dissemination of high-quality research in the interdisciplinary field of tribology and Standard Model Physics. Through his remarkable integration of theory, experimentation, and application, Prof. Dr. Kyosuke Ono has significantly shaped modern interpretations of nanoscale lubrication and dynamics. His work stands as a testament to the versatility of Standard Model Physics in solving real-world engineering problems and continues to inspire the next generation of researchers to extend the boundaries of applied and theoretical physics.

Profile: ORCID

Featured Publication

1. Ono, K. (2016–2019). Analytical study of slider vibrations and lubricant flow in subnanometer head-disk interface [Grant No. 16K06039]. Ministry of Education, Science and Technology, Tokyo, Japan.

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Post-Doctoral Researcher | University of Geneva | Switzerland

Dr. Atangana Likéné André Aimé is a distinguished researcher in High Energy Physics with expertise spanning Nuclear Physics, Particle Physics, and Radiation Protection. His academic background, marked by advanced degrees in Physics, reflects a strong foundation in theoretical and applied High Energy Physics. Professionally, he has served as a Research Officer at the Research Center of Nuclear Science and Technology, a Lecturer at the University of Yaoundé I, and a Post-Doctoral Researcher affiliated with the ATLAS Experiment at CERN, contributing to global advancements in High Energy Physics. His research interests include Quantum Chromodynamics, quark confinement, nuclear decay, and the application of machine learning to High Energy Physics phenomena. Dr. Atangana’s excellence in research has earned him notable honors, including the Best Researcher Award in High Energy Physics, academic scholarships, and leadership roles in scientific collaborations. His skills encompass symbolic computation, scientific programming, and Monte Carlo simulations, all pivotal in modern High Energy Physics modeling and analysis. With an active presence in international conferences and publications across prestigious journals like Nuclear Physics A, European Physical Journal C, and Modern Physics Letters A, he continues to advance High Energy Physics through innovative theoretical frameworks and computational methods. His dedication to advancing knowledge and mentoring the next generation of scientists underscores his professional integrity and global recognition. Scopus profile of 37 Citations, 24 Documents, 3 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Ahmadou, K., Atangana Likéné, A., Mbida Mbembe, S., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt. International Journal of Modern Physics E.

2. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, Oumar Bobbo, M., & Saidou. (2025). Analytical solutions of the 222Rn radon diffusion-advection equation through soil using Atangana–Baleanu time fractional derivative. Indian Journal of Physics.

3. Nga Ongodo, D., Atangana Likéné, A. A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times. The European Physical Journal C.

4. Nga Ongodo, D., Atangana Likéné, A. A., Zarma, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations. International Journal of Modern Physics E.

5. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, & Saidou. (2025). Angular momentum dependence of nuclear decay of radon isotopes by emission of 14C nuclei and branching ratio relative to α-decay. The European Physical Journal Plus.