Xuyang Liu | Hadron Physics | Research Excellence Award

Mr. Xuyang Liu | Hadron Physics | Research Excellence Award

Associate Professor | Liaoning University | China

Mr. Xuyang Liu is an active researcher whose work is deeply rooted in hadron physics, contributing substantially to the global understanding of theoretical models and particle interactions within hadron physics. His research spans advanced investigations of baryon structure, multi-quark dynamics, meson cloud effects and form-factor behavior, all of which are central themes within hadron physics. Through high-quality publications, he has strengthened theoretical frameworks that support precision modeling in hadron physics and expanded collaborations with international groups working on perturbative chiral quark approaches and related computational methods. His scholarly contributions demonstrate methodological depth, consistently advancing the predictive capabilities of hadron physics while offering results that inform broader high-energy studies. His influence is reflected in his cumulative publication record, which showcases impactful findings recognized within the hadron physics community. By integrating refined analytical techniques and cross-disciplinary insights, he continually enhances the scientific dialogue surrounding hadron physics, contributing to both conceptual development and practical modeling applications. His sustained commitment to rigorous research has positioned him as a significant contributor to ongoing progress in hadron physics, supporting both theoretical advancement and societal scientific enrichment. Scopus profile of 306 Citations, 30 Documents, 10 h-index.

Citation Metrics (Scopus)

350
250
150
50
0

306
Citations

30
Documents

10
h-index

                                  ■ Citations (Blue)          ■ Documents (Red)           ■ h-index (Green)

Featured Publications

Xin-Jian Wen | QCD Diagram | Best Researcher Award

Mr. Xin-Jian Wen | QCD Diagram | Best Researcher Award

Professor | Shanxi University | China

Mr. Xin-Jian Wen is a distinguished physicist renowned for his extensive contributions to Quantum Chromodynamics (QCD) and theoretical particle physics. His research is deeply rooted in exploring the properties of strongly interacting matter, the mechanisms underlying the QCD diagram transitions, and the behavior of strange quark matter in strong magnetic fields. Over the years, Mr. Xin-Jian Wen has built an influential academic profile through his pioneering studies on QCD diagram modeling, quark matter stability, and high-density nuclear matter, shaping global understanding in the field of QCD diagram phenomenology. His scholarly endeavors have led to numerous high-impact publications in leading journals such as Physical Review D, Physical Review C, and Journal of Physics G. Collaborating with eminent physicists from institutions including the University of Texas at El Paso and the Institute of High Energy Physics, he has advanced the precision of QCD diagram simulations and theoretical frameworks for quark-gluon interactions. His studies on the stability of strange quark matter and compact star structure through QCD diagram analyses have been particularly influential in connecting quantum field theory with astrophysical applications. Through sustained dedication, Mr. Xin-Jian Wen has become an integral contributor to theoretical high-energy physics, enriching the field of QCD diagram research and its broader implications in particle astrophysics. His approach integrates rigorous computational models with analytical perspectives, providing insights into QCD diagram transitions, nuclear phase structures, and the dynamics of matter under extreme conditions. His research continues to inspire advancements in QCD diagram studies, impacting both fundamental science and applied physics. With consistent academic productivity, strong collaborative networks, and impactful contributions to QCD diagram development, Mr. Xin-Jian Wen stands as a leading figure in experimental and theoretical high-energy studies. Scopus profile of 568 Citations, 44 Documents, 11 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Measuring the characterization of AFBR-S4N44P164M SiPM array at low temperatures for CEνNS detection. (2025). Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

2. Quark–hadron deconfinement at zero temperature in a strong magnetic field. (2025). European Physical Journal Plus.

3. Stability analysis of magnetized quark matter in Tsallis statistics. (2025). Universe.

4. Deconfinement of magnetized quark matter in a quasiparticle description. (2025). International Journal of Modern Physics A.