Muqaddar Abbas | Quantum Optics | Best Researcher Award

Assist. Prof. Dr. Muqaddar Abbas | Quantum Optics | Best Researcher Award

Assistant Professor at xian jiaotong university, China.

Dr. Muqaddar Abbas πŸ‘¨β€πŸ”¬ is an Assistant Professor at the School of Physics, Xi’an Jiaotong University πŸ‡¨πŸ‡³. Born on November 8, 1985 πŸ‡΅πŸ‡°, he specializes in Quantum Optics and Information Physics 🌌. With a strong academic foundation and over a decade of research and teaching experience, Dr. Abbas has published extensively in prestigious journals πŸ“š and actively participates in global conferences 🌍. His work explores cutting-edge quantum technologies including cavity quantum electrodynamics and photonic effects πŸ’‘. Beyond academia, he enjoys badminton 🏸, hiking πŸ₯Ύ, and reading πŸ“–. He is known for his collaborative spirit and scientific curiosity.

Professional Profile:

Scopus

πŸ…Suitability for Best Researcher Award – Assist. Prof. Dr. Muqaddar AbbasΒ 

Dr. Muqaddar Abbas exemplifies excellence in research through his deep engagement with cutting-edge topics in Quantum Optics and Information Physics. With a Ph.D. focused on nonlinear quantum systems and over a decade of progressive academic roles, he has consistently contributed to both the theoretical and applied facets of quantum science. His international exposure, interdisciplinary collaborations, and strong publication record in reputed journals strengthen his candidature.

πŸ“˜ Education & Experience

  • πŸ§‘β€πŸŽ“ Ph.D. in Physics (Quantum Optics) – COMSATS University Islamabad, Pakistan (2012–2017)
    πŸ“˜ Thesis: Effect of Kerr Nonlinearity

  • πŸ“˜ M.Phil. in Physics – Quaid-i-Azam University Islamabad (2009–2011)
    πŸ§ͺ Thesis: Non-Markovian Dynamics

  • πŸ“˜ M.Sc. in Physics – Quaid-i-Azam University Islamabad (2006–2008)

  • πŸ“˜ B.Sc. in Physics & Math – University of Punjab, Lahore (2004–2006)

πŸ’Ό Professional Experience

  • πŸ‘¨β€πŸ« Assistant Professor, Xi’an Jiaotong University (2021–Present)

  • πŸ”¬ Senior Scientific Officer, COMSATS University Islamabad (2018–2021)

  • πŸ§‘β€πŸ”¬ Research Associate, COMSATS University Islamabad (2011–2018)

πŸ“ˆ Professional Development

Dr. Abbas continually enhances his academic and professional expertise through active participation in international conferences and workshops 🌐, including presentations in Germany πŸ‡©πŸ‡ͺ, China πŸ‡¨πŸ‡³, and Pakistan πŸ‡΅πŸ‡°. He has contributed to scientific events like ICEQT, ICQFT, and Quantum 2020 πŸ“‘. His technical toolkit includes MATLAB, Mathematica, Python, and LaTeX πŸ’». Additionally, his soft skillsβ€”teamwork, leadership, and problem-solvingβ€”complement his technical acumen 🧠. With fluency in English and Urdu, and basic Chinese skills πŸ—£οΈ, he collaborates effectively across global platforms. His commitment to learning ensures he remains at the forefront of quantum research and education πŸ“šπŸŒŸ.

πŸ”¬ Research Focus Area

Dr. Muqaddar Abbas’s research is rooted in Quantum Optics and Quantum Information Science 🌠. His work spans advanced areas such as Cavity Quantum Electrodynamics, Bose-Einstein Condensates, Cavity-Optomechanics, and Electromagnetically Induced Transparency (EIT) πŸ”. He also explores modern phenomena like the Photonic Spin Hall Effect and Rydberg Atom Control Theory πŸŒ€. His aim is to develop innovative solutions in optical memory, sensing, and slow/fast light control πŸ“‘. By combining theoretical modeling with experimental insight, he contributes to advancing quantum technologies for the future of communication and computation πŸ’‘πŸ§¬.

πŸ… Honors & Awards

  • πŸ† Research Productivity Awards – COMSATS University (2016–2018)

  • πŸŽ“ Razmi Fellowship – Quaid-i-Azam University (2009–2010)

  • πŸŽ–οΈ Merit Fellowship – Quaid-i-Azam University (2010–2011)

Publication Top Notes

πŸ“˜ 1. Double-frequency photonic spin Hall effect in a tripod atomic system

Authors: M. Abbas, Y. Wang, F. Wang, P. Zhang, H.R. Hamedi
Journal: Optics Communications (2025)
Summary:
This paper reports the realization of a double-frequency photonic spin Hall effect (PSHE) using a tripod atomic configuration. By carefully designing the atomic energy levels and their coupling with external fields, the authors demonstrate that two distinct frequency components of the PSHE can be produced and controlled. This study offers new avenues for developing advanced photonic spintronic devices with enhanced frequency diversity and control.

πŸ“˜ 2. Coherent- and dissipative-coupling control of photonic spin Hall effect in cavity magnomechanical system

Authors: A. Munir, M. Abbas, Ziauddin, C. Wang
Journal: Optics and Laser Technology (2025)
Summary:
This work explores how both coherent and dissipative couplings in a cavity magnomechanical system can be exploited to control the PSHE. Through theoretical modeling and simulations, the paper demonstrates how coupling strengths and detunings impact the spin-dependent light deflection, providing a flexible mechanism for dynamic photonic modulation.

πŸ“˜ 3. Tuning the Photonic Spin Hall Effect through vacuum-induced transparency in an atomic cavity

Authors: M. Abbas, Y. Wang, F. Wang, H.R. Hamedi, P. Zhang
Journal: Chaos, Solitons & Fractals (2025)
Citations: 1
Summary:
The study presents a scheme to enhance and tune the PSHE using vacuum-induced transparency (VIT) in a cavity containing atomic media. The authors analyze how quantum interference and vacuum field interactions can be manipulated to control spin-dependent beam shifts, offering promising applications in quantum metrology and optical switches.

πŸ“˜ 4. Manipulation of the photonic spin Hall effect in a cavity magnomechanical system

Authors: M. Abbas, G. Din, H.R. Hamedi, P. Zhang
Journal: Physical Review A (2025)
Summary:
This article investigates the manipulation of the PSHE within a hybrid magnomechanical system, where magnons and phonons interact with cavity photons. The authors demonstrate the ability to control the light’s spin-dependent trajectory via external magnetic fields and mechanical resonances, offering novel functionalities for nonreciprocal light propagation.

πŸ“˜ 5. Coherent control of Surface Plasmon Polaritons Excitation via tunneling-induced transparency in quantum dots

Authors: F. Badshah, M. Abbas, Y. Zhou, H. Huang, Rahmatullah
Journal: Optics and Laser Technology (2025)
Citations: 7
Summary:
This paper proposes a method to control the excitation of surface plasmon polaritons (SPPs) in quantum dot systems using tunneling-induced transparency (TIT). Through careful modulation of electron tunneling parameters, the authors achieve precise control over SPP excitation, enhancing prospects for quantum plasmonic circuits and sensing applications.

πŸ“˜ 6. Tunable photonic spin Hall effect in a tripod atom-light configuration

Authors: M. Abbas, P. Zhang, H.R. Hamedi
Journal: Physical Review A (2025)
Summary:
This study introduces a tunable PSHE mechanism based on a tripod atomic level structure interacting with light. By adjusting the control field parameters, the authors show how the spin-dependent deflection angle and direction of the transmitted beam can be precisely regulated, enabling potential use in spin-controlled photonic routing systems.

πŸ“˜ 7. Nonreciprocal cavity magnonics system for amplification of photonic spin Hall effect

Authors: A. Munir, M. Abbas, C. Wang
Journal: Chaos, Solitons & Fractals (2025)
Summary:
This article explores a nonreciprocal cavity magnonics system that significantly amplifies the PSHE. By leveraging nonreciprocal magnon-photon coupling, the system allows for enhanced spin-controlled light propagation. The approach provides a promising framework for designing isolators and circulators in integrated quantum optical devices.

🧾 Conclusion

Dr. Muqaddar Abbas’s work stands at the forefront of quantum technology research, with practical implications for the future of secure communication, quantum computing, and photonic systems. His sustained publication record, international collaborations, research excellence, and mentorship contributions make him a deserving recipient of the Best Researcher Award.

Smail Bougouffa | Quantum Science | Best Researcher Award

Prof. Smail Bougouffa | Quantum Science | Best Researcher Award

SA at Physics Department, College of Science, Imam Mohammad Ibn Saud Islamic University, Saudi Arabia.

Prof. Smail Bougouffa πŸŽ“ is a distinguished Professor of Theoretical Physics at Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia πŸ‡ΈπŸ‡¦. Born in 1959 in Khenchela, Algeria πŸ‡©πŸ‡Ώ, he is renowned for his expertise in Quantum Optics, Quantum Information, and the Angular Momentum of Light βš›οΈ. With over 40 years of academic and research experience across Algeria, Libya, Yemen, and Saudi Arabia 🌍, he has significantly advanced the field of quantum science in the MENA region. He is also an avid user of Maple, Mathematica, MATLAB, and LaTeX πŸ’».

Professional Profile:

Scopus

ORCID

Google Scholar

Suitability For Best Researcher Award – Prof. Smail Bougouffa

Prof. Bougouffa exemplifies the ideal candidate for the Best Researcher Award through:

  • Pioneering contributions in Quantum Optics, Quantum Information, and Theoretical Physics βš›οΈ.

  • Over 40 years of international academic and research experience across four countries 🌍.

  • A sustained publication record, supervision of postgraduate research, and leadership in nationally funded projects.

  • A key role in the development of physics research in the MENA region.

  • Active participation in international scientific dialogue through 40+ conferences 🌐.

  • Technical mastery of modern scientific software (Maple, MATLAB, Mathematica, LaTeX) πŸ’».

πŸ”Έ Education & Experience

  • πŸŽ“ Ph.D. in Theoretical Physics, University of Constantine, Algeria

  • πŸ‘¨β€πŸ« Over 40 years of teaching & research in Algeria πŸ‡©πŸ‡Ώ, Libya πŸ‡±πŸ‡Ύ, Yemen πŸ‡ΎπŸ‡ͺ, and Saudi Arabia πŸ‡ΈπŸ‡¦

  • 🧠 Taught undergraduate & postgraduate physics courses including Quantum Mechanics and Optomechanics

  • πŸ“š Supervised numerous Master’s theses in Quantum Science

  • πŸ§ͺ Led nationally funded research projects on entanglement, quantum synchronization, and cavity optomechanics

πŸ”Ή Professional Development

Prof. Bougouffa has actively participated in the professional development of physics education and research in the Arab world 🌍. He has presented his research at over 40 international conferences 🌐 in the US πŸ‡ΊπŸ‡Έ, Europe πŸ‡ͺπŸ‡Ί, and the Middle East πŸ›οΈ. He served on editorial boards for scientific journals at Taibah University and IMSIU πŸ“–. His technical proficiency in Maple, Mathematica, MATLAB, and LaTeX πŸ’» has enabled him to engage in high-level computational and theoretical physics. Prof. Bougouffa continues to mentor young researchers while contributing to academic excellence and the global physics community πŸ§‘β€πŸ”¬.

πŸ”Έ Research Focus

Prof. Bougouffa’s research focuses on the rapidly evolving fields of Quantum Optics, Quantum Information, and Theoretical Physics βš›οΈ. He specializes in the Angular Momentum of Light, entanglement dynamics, quantum synchronization, and cavity optomechanics πŸ”¬. His work contributes to foundational and applied quantum mechanics, with implications for quantum computing, communication, and precision measurement technologies πŸ’‘. By modeling quantum interactions and exploring coherence and decoherence phenomena, his studies bridge classical and quantum realms 🌐. His commitment to research excellence places him among the pioneers in quantum science in the Middle East and North Africa region 🧠.

πŸ”Ή Awards & Honors

  • πŸ… Recognized for contributions to quantum science education in the MENA region

  • πŸ—£οΈ Invited speaker at over 40 international conferences

  • πŸ“œ Editorial board member at journals in Taibah University and IMSIU

  • πŸ‘¨β€πŸ« Honored by various institutions for his academic service and mentorship

Publication Top Notes

1. Energy gaps and optical phonon frequencies in InPβ‚βˆ’β‚“Sbβ‚“

  • Authors: N. Bouarissa, S. Bougouffa, A. Kamli

  • Journal: Semiconductor Science and Technology

  • Volume: 20

  • Issue: 3

  • Pages: 265

  • Citations: 80

  • Year: 2005

  • Summary: This study explores the energy band gaps and optical phonon behavior in InPβ‚βˆ’β‚“Sbβ‚“ alloys using theoretical modeling. The results aid in understanding the electronic and vibrational properties critical for semiconductor applications.

2. Adomian method for solving some coupled systems of two equations

  • Authors: L. Bougoffa, S. Bougouffa

  • Journal: Applied Mathematics and Computation

  • Volume: 177

  • Issue: 2

  • Pages: 553–560

  • Citations: 36

  • Year: 2006

  • Summary: The paper applies the Adomian decomposition method to solve coupled nonlinear differential systems. It demonstrates the method’s accuracy and efficiency through several examples.

3. Optical manipulation at planar dielectric surfaces using evanescent Hermite–Gaussian light

  • Authors: S. Al-Awfi, S. Bougouffa, M. Babiker

  • Journal: Optics Communications

  • Volume: 283

  • Issue: 6

  • Pages: 1022–1025

  • Citations: 34

  • Year: 2010

  • Summary: This work examines the manipulation of particles using evanescent Hermite–Gaussian beams at dielectric interfaces, relevant for optical trapping and nano-manipulation technologies.

4. Entanglement dynamics of two-bipartite system under the influence of dissipative environments

  • Author: S. Bougouffa

  • Journal: Optics Communications

  • Volume: 283

  • Issue: 14

  • Pages: 2989–2996

  • Citations: 29

  • Year: 2010

  • Summary: Investigates how entanglement between bipartite quantum systems evolves under dissipation. The study provides insights into decoherence and quantum information preservation.

5. Entanglement dynamics of high-dimensional bipartite field states inside the cavities in dissipative environments

  • Authors: R. Tahira, M. Ikram, S. Bougouffa, M. S. Zubairy

  • Journal: Journal of Physics B: Atomic, Molecular and Optical Physics

  • Volume: 43

  • Issue: 3

  • Article Number: 035502

  • Citations: 26

  • Year: 2010

  • Summary: Analyzes the entanglement behavior of high-dimensional field states in cavity quantum electrodynamics (QED) settings, considering the effects of environmental dissipation.

6. Entanglement generation between two mechanical resonators in two optomechanical cavities

  • Authors: A. A. L. Rehaily, S. Bougouffa

  • Journal: International Journal of Theoretical Physics

  • Volume: 56

  • Issue: 5

  • Pages: 1399–1409

  • Citations: 23

  • Year: 2017

  • Summary: Proposes a model for generating entanglement between distant mechanical resonators through optomechanical interaction, contributing to quantum communication and sensing research.

🏁 Conclusion

Prof. Smail Bougouffa stands out as a visionary and transformative figure in the field of theoretical and quantum physics. His lifelong commitment to research, international collaboration, and academic mentorship not only advances scientific knowledge but also empowers future generations of physicists. These remarkable achievements strongly justify his nomination for the Best Researcher Award.