Prof. Heshmatollah Yavari | Quantum Science | Best Academic Researcher Award

Prof. Heshmatollah Yavari | Quantum Science | Best Academic Researcher Award

Researcher at University of Isfahan, Iran

Prof. Heshmatollah Yavari has established himself as a leading figure in Quantum Science, contributing significantly to the understanding of superconductivity, superfluidity, and condensed matter systems. His work consistently integrates Quantum Science with theoretical models and practical applications. Prof. Yavari’s expertise in Quantum Science spans ultracold atomic gases, optical lattices, and neutron star physics, offering deep insights into strongly correlated systems. His pioneering role in Quantum Science research has positioned him among scholars who shape the evolution of modern physics. Prof. Yavari has consistently advanced Quantum Science through publications, collaborations, and innovative teaching. His vision within Quantum Science demonstrates a balance between theoretical foundations and cutting-edge applications, ensuring that Quantum Science remains central to future technological advances.

Professional Profile

ORCID Profile | Scopus Profile

Education 

Prof. Heshmatollah Yavari pursued his academic path with a clear dedication to Quantum Science, beginning with foundational studies in physics and advancing into specialized training in theoretical physics. His academic journey reflects a continuous engagement with Quantum Science, from undergraduate exploration to doctoral research. Prof. Yavari’s academic contributions reveal a strong commitment to Quantum Science, particularly in understanding transport phenomena, superconductors, and superfluids. Through each stage of education, Quantum Science remained the guiding principle of his learning and research. Prof. Yavari developed deep theoretical knowledge of Quantum Science, complemented by practical research projects that reinforced his scholarly standing. This trajectory highlights how Quantum Science shaped his intellectual development and prepared him for a lifetime of contribution to global scientific discovery.

Experience 

Prof. Heshmatollah Yavari’s professional career exemplifies dedication to Quantum Science, demonstrated through decades of teaching, mentoring, and research leadership. His role as professor of physics at the University of Isfahan highlights his continuous contribution to Quantum Science across multiple levels of academia. He has guided numerous students into advanced areas of Quantum Science, fostering innovation and critical thinking. His lectures on advanced quantum mechanics, statistical mechanics, and field theory exemplify the integration of Quantum Science with core theoretical frameworks. As a professional, Prof. Yavari actively collaborates with international scholars, expanding Quantum Science into interdisciplinary domains. His administrative roles and research coordination further underline his commitment to ensuring Quantum Science thrives as both a teaching discipline and a global research frontier.

Research Interest 

Prof. Heshmatollah Yavari’s research interests are firmly grounded in Quantum Science, with a focus on superconductivity, Bose-Einstein condensation, ultracold atomic gases, and topological insulators. His scholarly work connects Quantum Science with the mysteries of neutron stars, strongly correlated systems, and Majorana fermions. Prof. Yavari consistently expands the boundaries of Quantum Science by developing theories and models that address both fundamental and applied physics. Quantum Science drives his investigations into spin transport, optical lattices, and nonlocal effects in superconductors. His work reveals how Quantum Science contributes to understanding universal phenomena, from nanoscale materials to astrophysical systems. By integrating theory with experimental possibilities, Prof. Yavari demonstrates the transformative potential of Quantum Science across diverse scientific landscapes, ensuring it remains vital to modern physics.

Award and Honor

Prof. Heshmatollah Yavari has received recognition for his excellence in Quantum Science, reflecting his significant academic and research achievements. Awards and honors granted to Prof. Yavari underscore his enduring contributions to Quantum Science and theoretical physics. His published works in leading journals highlight the respect he commands in the Quantum Science community. Each accolade represents acknowledgment of his outstanding role in shaping Quantum Science and inspiring future generations of researchers. Honors received are not only a personal achievement but also evidence of his commitment to advancing Quantum Science globally. Through academic excellence and influential publications, Prof. Yavari’s reputation continues to strengthen, ensuring his name remains synonymous with quality and leadership in the growing field of Quantum Science.

Research Skill

Prof. Heshmatollah Yavari demonstrates advanced research skills in Quantum Science, applying both theoretical and computational methods to complex problems in physics. His expertise includes modeling superconductivity, analyzing transport properties, and interpreting Quantum Science phenomena in condensed matter systems. Prof. Yavari has mastered Quantum Science techniques related to ultracold atoms, superfluids, and nanoscale structures. His ability to integrate Quantum Science with interdisciplinary domains makes his skillset unique and impactful. Collaborations with other experts further amplify his Quantum Science research capabilities. His analytical approaches, problem-solving methods, and innovative thinking establish him as a skilled leader in Quantum Science. These research skills ensure that Prof. Yavari continuously contributes new insights and strengthens the foundation of Quantum Science in both academic and applied contexts.

Publication Top Notes 

Title: Purity of entangled photon pairs in a semiconductor–superconductor heterostructure in the presence of both Rashba and Dresselhaus SOCs
Authors: Zahra Saeedi; Heshmatollah Yavari
Journal: Materials Research Bulletin

Title: Effects of Rashba and Dresselhaus spin-orbit couplings on the critical temperature and paramagnetic limiting field of superconductors with broken inversion symmetry
Authors: H. Yavari; M. Tayebantayeba
Journal: Physica C: Superconductivity and its Applications

Title: Impurity and hybridization effects on the symmetry classification and magnetic response function of a two-band superconductor with interband pairing order
Authors: F Aghamohammadi Renani; H Yavari
Journal: Progress of Theoretical and Experimental Physics

Title: Three-body and Coulomb interactions in a quasi-two-dimensional dipolar Bose-condensed gas
Authors: Heshmatollah Yavari
Journal: Annals of Physics

Title: Effects of hybridization and spin–orbit coupling to induce odd-frequency pairing in two-band superconductors
Authors: Heshmatollah Yavari
Journal: The European Physical Journal Plus

Title: Shear viscosity in the strong interaction regime of a p-wave superfluid Fermi gas
Authors: Heshmatollah Yavari
Journal: Physics Letters A

Title: Anomalous viscosity of a chiral two-orbital superconductor in tight-binding model
Authors: Heshmatollah Yavari
Journal: The European Physical Journal Plus

Title: Progress in the development and construction of high temperature superconducting magnets
Authors: Heshmatollah Yavari
Journal: Superconductor Science and Technology

Title: On the Properties of Novel Superconductors
Authors: Heshmatollah Yavari
Journal: IntechOpen

Title: Effects of Thermally Induced Roton‐Like Excitation on the Superfluid Density of a Quasi‐2D Dipolar Bose Condensed Gas
Authors: Heshmatollah Yavari
Journal: Annalen der Physik

Title: Effect of long-range 1/r interaction on thermal and quantum depletion of a dipolar quasi-two-dimensional Bose gas
Authors: Heshmatollah Yavari
Journal: Low Temperature Physics

Title: Phase-dependent heat current of granular Josephson junction for different geometries
Authors: Heshmatollah Yavari
Journal: Physics Letters A

Title: Edge currents as a probe of the strongly spin-polarized topological noncentrosymmetric superconductors
Authors: Heshmatollah Yavari
Journal: Physical Review B

Title: Hall viscosity of a chiral two-orbital superconductor at finite temperatures
Authors: Heshmatollah Yavari
Journal: Physica C: Superconductivity and its Applications

Title: Temperature Dependence of the Thermal Conductivity of a Trapped Dipolar Bose-Condensed Gas
Authors: Heshmatollah Yavari
Journal: Brazilian Journal of Physics

Title: Low-Temperature Dependence of the Shear Viscosity in Superconductor S r 2 R u O 4
Authors: Heshmatollah Yavari
Journal: Journal of Superconductivity and Novel Magnetism

Title: Effect of nonlinearity, magnetic and nonmagnetic impurities, and spin-orbit scattering on the nonlocal microwave response of ad-wave superconductor
Authors: Heshmatollah Yavari
Journal: Low Temperature Physics

Title: Landau damping in a dipolar Bose–Fermi mixture in the Bose–Einstein condensation (BEC) limit
Authors: Heshmatollah Yavari
Journal: Chinese Physics B

Title: Depletion of the condensate in a dipolar Bose condensed gas in the presence of impurities
Authors: Heshmatollah Yavari
Journal: The European Physical Journal Plus

Title: Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population
Authors: Heshmatollah Yavari
Journal: Annals of Physics

Conclusion

Prof. Heshmatollah Yavari’s career is a testament to the power of Quantum Science in shaping both knowledge and technology. His lifelong dedication to Quantum Science demonstrates how deep theoretical inquiry can lead to transformative discoveries. Prof. Yavari’s role as a professor, researcher, and author illustrates his enduring influence on Quantum Science. By nurturing students, publishing extensively, and advancing new ideas, he ensures that Quantum Science remains dynamic and progressive. His contributions prove that Quantum Science is not only central to academic inquiry but also critical for global innovation. In conclusion, Prof. Yavari embodies excellence in Quantum Science, representing a model scholar whose legacy will continue to inspire future advancements in the ever-expanding universe of Quantum Science.

Sergei Roshchupkin | Quantum Electrodynamics | Best Researcher Award

Prof. Dr. Sergei Roshchupkin | Quantum Electrodynamics | Best Researcher Award

Professor of the Higher School of Fundamental Physical Research at Peter the Great St.Petersburg Polytechnic University (SPbPU), Russia

Sergei Pavlovich Roshchupkin, born on June 3, 1953, in Konotop, USSR, is a distinguished physicist specializing in quantum electrodynamics (QED) in strong electromagnetic fields. He earned his PhD in 1983 and Doctor of Sciences in 1995 from the National Research Nuclear University MEPhI. With decades of research and teaching experience, he has contributed significantly to theoretical physics, quantum optics, and laser-matter interactions. Currently a professor at Peter the Great St. Petersburg Polytechnic University, he has led numerous research projects and authored groundbreaking studies in high-energy physics. His work has earned him the title of Honored Scientist of Ukraine. 🏅📚

Professional Profile:

Orcid

Scopus

Google Scholar

Education & Experience 📖🔬

Education 🎓

  • 1971-1977 – Moscow Engineering Physics Institute (National Research Nuclear University MEPhI), Department of Experimental and Theoretical Physics

  • 1983 – PhD in Physics: “Bremsstrahlung of Electrons and Photoproduction of Electron-Positron Pairs in Strong Electromagnetic Fields”

  • 1995 – Doctor of Sciences (Phys & Maths): “Stimulated Emission and Spontaneous Bremsstrahlung in Relativistic Electron Collisions with Strong Light Fields”

Career & Employment 💼

  • 1977-1980 – Engineer at Russian Federal Nuclear Center (RFNC – VNIIEF) 🏗️

  • 1983-1992 – Research Assistant & Associate Professor at Sumy State University 🏫

  • 1992-2000 – Senior Staff Scientist & Professor at Institute of Applied Physics, NASU 🔬

  • 2000-2001 – Head of Department of Economic Cybernetics at Ukrainian Academy of Banking 🏦

  • 2001-2012 – Head of Laboratory of Quantum Electrodynamics, Institute of Applied Physics, NASU ⚛️

  • 2012-Present – Professor & Head of Quantum Electrodynamics of Strong Fields, Peter the Great St. Petersburg Polytechnic University 🏛️

Professional Development 📚✨

Sergei Pavlovich Roshchupkin has spent over four decades advancing research in quantum electrodynamics (QED) in strong electromagnetic fields. His studies focus on the interactions of intense laser radiation with electrons, ions, and cosmic phenomena like pulsars and magnetars. 🌌⚡ His pioneering work in nonlinear quantum optics and laser amplification in QED processes has shaped modern theoretical physics. With extensive teaching experience, he has mentored students in classical mechanics, electrodynamics, and quantum theory. His leadership in scientific departments and research labs has propelled international collaborations and groundbreaking discoveries in high-energy physics. 🚀📖

Research Focus 🔍🧪

Sergei Pavlovich Roshchupkin’s research is at the frontier of high-energy quantum electrodynamics (QED) and nonlinear quantum optics. He investigates strong electromagnetic fields and their influence on particle interactions, particularly in extreme astrophysical environments like pulsars and magnetars. 🌠⚡ His studies delve into laser-lepton and laser-ion interactions, uncovering new ways to amplify laser radiation using QED processes in strong fields. 💡 His work contributes to the understanding of fundamental physics laws governing particle behavior under ultra-intense conditions, crucial for advancements in plasma physics, astrophysics, and next-generation laser technology. 🔬💥

Awards & Honors 🏆🎖️

🏅 Honored Scientist of Ukraine – Awarded in May 2011 for outstanding contributions to physics and quantum electrodynamics.
📜 Full Professor Title – Awarded in 1997 at Sumy State University for excellence in research and teaching.
🎓 Doctor of Sciences (Phys & Maths) – Earned in 1995 for groundbreaking work in stimulated emission and electron bremsstrahlung in strong light fields.
🔬 Leader of Multiple Research Projects – Recognized internationally for contributions to high-energy physics and QED.

Publication Top Notes

  1. Quantum Entanglement of the Final Particles in the Resonant Trident Pair Production Process in a Strong Electromagnetic Wave

    • Journal: Photonics

    • Published: March 27, 2025

    • DOI: 10.3390/photonics12040307

    • Focus: This paper investigates quantum entanglement in the final particles produced during the resonant trident pair production process, which occurs under the influence of a strong electromagnetic wave. The study explores how entanglement manifests in this high-energy particle interaction.

  2. Generation of Narrow Beams of Super High-Energy Gamma Quanta in the Resonant Compton Effect in the Field of a Strong X-ray Wave

    • Journal: Photonics

    • Published: June 26, 2024

    • DOI: 10.3390/photonics11070597

    • Focus: This paper discusses the generation of narrow beams of super high-energy gamma quanta using the resonant Compton effect, particularly in the field of a strong X-ray electromagnetic wave. It focuses on how intense electromagnetic fields can influence the generation of these high-energy photons.

  3. The Generation of High-Energy Electron–Positron Pairs during the Breit–Wheeler Resonant Process in a Strong Field of an X-ray Electromagnetic Wave

    • Journal: Symmetry

    • Published: October 10, 2023

    • DOI: 10.3390/sym15101901

    • Focus: This article explores the generation of high-energy electron–positron pairs in the Breit–Wheeler resonant process under the influence of a strong X-ray electromagnetic field. It examines the conditions necessary for this process and its implications in quantum electrodynamics.

  4. Резонансный процесс Брейта-Уиллера в сильном электромагнитном поле

    • Journal: Теоретическая и математическая физика (Theoretical and Mathematical Physics)

    • Published: September 2023

    • DOI: 10.4213/tmf10449

    • Focus: This paper, in Russian, focuses on the Breit–Wheeler resonant process in strong electromagnetic fields. It analyzes the theoretical aspects of this phenomenon and its importance in high-energy physics.

  5. Generation of Narrow Beams of Ultrarelativistic Positrons (Electrons) in the Breit–Wheeler Resonant Process Modified by the Field of a Strong Electromagnetic Wave

    • Journal: Photonics

    • Published: August 18, 2023

    • DOI: 10.3390/photonics10080949

    • Focus: This paper discusses the modification of the Breit–Wheeler resonant process by a strong electromagnetic field, specifically focusing on the generation of narrow beams of ultrarelativistic positrons and electrons. The study explores how strong fields can influence particle acceleration and beam formation.

Conclusion

Professor Roshchupkin’s exceptional contributions to quantum electrodynamics, his leadership in theoretical physics research, and his recognition as an honored scientist make him a strong candidate for the Best Researcher Award. His work continues to shape modern physics, particularly in the fields of strong-field QED, non-linear optics, and astrophysical plasmas. His legacy in both research and academia is a testament to his excellence and impact on the global scientific community.