Muhammad Mustafa Dastageer | Physics and Astronomy | Best Researcher Award

Mr. Muhammad Mustafa Dastageer | Physics and Astronomy | Best Researcher Award

Research Assistant | University of Engineering and Technology | Pakistan

Mr. Muhammad Mustafa Dastageer is a dedicated researcher whose work is deeply rooted in the advancing frontiers of Physics and Astronomy. His scientific contributions focus on laser spectroscopy, plasma diagnostics, and machine-learning-assisted analytical techniques, forming a strong foundation for impactful research within the broader domains of Physics and Astronomy. Through his involvement in collaborative projects spanning national and international institutions, he has strengthened the integration of experimental methods with computational intelligence, demonstrating how Physics and Astronomy can bridge fundamental inquiry and applied innovation. Mr. Dastageer has contributed to significant publications addressing biomedical sensing, laser–matter interaction, and materials characterization, with his research appearing in reputable scientific journals. His role in major collaborative efforts, including studies on laser-induced breakdown spectroscopy for medical applications, underscores his commitment to expanding the practical relevance of Physics and Astronomy. His publications highlight rigorous experimental methodology, interdisciplinary coordination, and a clear dedication to scientific advancement. In addition to research excellence, he has actively contributed to scholarly events, conferences, and scientific communities, further reinforcing the global impact of Physics and Astronomy. His participation in academic symposiums and specialized workshops reflects his ongoing effort to promote knowledge exchange and foster innovation. Through these engagements, he contributes to shaping the evolving landscape of Physics and Astronomy, ensuring that theoretical understanding and technical application continue to progress side by side. With a professional trajectory centered on academic rigor, scientific integrity, and international collaboration, Mr. Dastageer remains committed to pushing forward the boundaries of Physics and Astronomy. His work exemplifies how modern research in Physics and Astronomy can meaningfully contribute to society, healthcare, materials science, and technological development. Scopus profile of 2 Citations, 3 Documents, 1 h-index.

Profiles: Google Scholar | ORCID | Scopus

Featured Publications

1. Mustafa, M., Latif, A., Jehangir, M., & Siraj, K. (2022). Nd: YAG laser irradiation consequences on calcium and magnesium in human dental tissues. Lasers in Dental Science, 6(2), 107–115.

2. Mustafa, M., Latif, A., & Jehangir, M. (2022). Laser-induced breakdown spectroscopy and microscopy study of human dental tissues. Electron Microscopy, 1–14.

3. Dastageer, M. M., Siraj, K., Pedarnig, J. D., Zhang, D., Qasim, M., Rahim, M. S. A., ... (2025). From fundamentals of laser-induced breakdown spectroscopy to recent advancements in cancer detection and calcified tissues analysis: An overview (2015–2025). Molecules, 30(21), 4176.

4. Mushtaq, S., Siraj, K., Rahim, M. S. A., Younas, Q., Hussain, B. M., Qasim, M., ... (2025). Analysis of edible silver foils under steady magnetic field by calibration free laser induced breakdown spectroscopy (CF-LIBS). Iranian Journal of Science, 49(3), 889–899.

5. Younas, Q., Siraj, K., Osipowicz, T., Naeem, S., Zhao, Y., Tan, C. C., Bashir, S., ... (2025). Impact of gold ions on nanohardness and various characteristics of G-metal alloy surface. Metals and Materials International, 1–17.

Prof. Dr. Zbigniew Haba | Quantum Field Theory | Best Researcher Award

Prof. Dr. Zbigniew Haba | Quantum Field Theory | Best Researcher Award

Professor | University of Wroclaw | Poland

Prof. Dr. Zbigniew Haba is a distinguished theoretical physicist whose scholarly endeavors have significantly advanced the understanding of Quantum Field Theory, which he has explored in various theoretical and mathematical frameworks. Throughout his academic and research career, Quantum Field Theory has remained the cornerstone of his investigations, particularly in relation to quantum gravity, statistical field theory, and stochastic processes. He earned his Ph.D. and later served as a visiting professor at Bielefeld University, Bochum University, the Max Planck Institute in Munich, and Lisbon University, where his expertise in Quantum Field Theory contributed to both research and mentorship. His scientific output, reflected in his Google Scholar profile with 1007 citations, an h-index of 16, and an i10-index of 31, demonstrates his influence in the global research community. Prof. Dr. Haba’s profound understanding of Quantum Field Theory extends to its applications in cosmology, string theory, and renormalization techniques. His research interests include advanced formulations of Quantum Field Theory, path integrals, and non-perturbative effects in gauge theories. Recognized for his academic contributions, he has been associated with several leading institutions and has published numerous papers that continue to guide scholars in theoretical physics. His research skills encompass analytical modeling, mathematical physics, and the rigorous development of quantum systems within the scope of Quantum Field Theory, which he has emphasized repeatedly as the unifying framework of modern physics. In conclusion, Prof. Dr. Z. Haba’s enduring commitment to Quantum Field Theory establishes him as a pioneering figure whose theoretical insights continue to shape contemporary physics.

Profiles: ORCID | Google Scholar

Featured Publications

1. Albeverio, S., Haba, Z., & Francesco, R. (1996). Trivial solutions for a nonlinear two-space dimensional wave equation perturbed by space-time white noise. Stochastics: An International Journal of Probability and Stochastic Processes, 80.

2. Albeverio, S., & Haba, Z. (2001). A two-space dimensional semilinear heat equation perturbed by (Gaussian) white noise. Probability Theory and Related Fields, 121, 319–366.

3. Haba, Z. (2009). Relativistic diffusion. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 79(2).

4. Benisty, D., Guendelman, E. I., & Haba, Z. (2019). Unification of dark energy and dark matter from diffusive cosmology. Physical Review D, 99(12), 123521.

5. Haba, Z., Stachowski, A., & Szydłowski, M. (2016). Dynamics of the diffusive DM-DE interaction–dynamical system approach. Journal of Cosmology and Astroparticle Physics, 2016(07), 024.*

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Prof. Dr. Kyosuke Ono | Standard Model Physics | Best Researcher Award

Professor of Emeritus | Institute of Science Tokyo | Japan

Prof. Dr. Kyosuke Ono is an esteemed physicist renowned for his pioneering contributions to Standard Model Physics and applied tribology. His distinguished career at the Tokyo Institute of Technology, where he served as a professor and later as an emeritus scholar, is marked by extensive research in Standard Model Physics that bridges fundamental particle behavior with mechanical system dynamics. Throughout his tenure, Prof. Dr. Ono made significant advances in understanding sub-monolayer lubricant physics within the head-disk interface, offering crucial insights that align the precision of Standard Model Physics principles with nanoscale mechanical phenomena. His scholarly work reflects deep engagement with the continuum mechanics framework and its extension into sub-monolayer film theory, where Standard Model Physics served as the theoretical backbone guiding molecular interactions and force distributions at the atomic level. Prof. Dr. Ono’s prolific academic output includes numerous publications in leading international journals such as Tribology Letters, ASME Transactions on Tribology, and ASME Transactions on Applied Mechanics. His h-index of 26 demonstrates substantial influence and citation within the global Standard Model Physics and mechanical engineering communities. His collaborations with the Storage Research Consortium in Japan and industrial contributions as a technical advisor for hard disk drive development underscore his ability to translate Standard Model Physics insights into practical innovations with lasting industrial relevance. Furthermore, as an editorial board member for Lubricants (EDPI), he has consistently advanced the dissemination of high-quality research in the interdisciplinary field of tribology and Standard Model Physics. Through his remarkable integration of theory, experimentation, and application, Prof. Dr. Kyosuke Ono has significantly shaped modern interpretations of nanoscale lubrication and dynamics. His work stands as a testament to the versatility of Standard Model Physics in solving real-world engineering problems and continues to inspire the next generation of researchers to extend the boundaries of applied and theoretical physics.

Profile: ORCID

Featured Publication

1. Ono, K. (2016–2019). Analytical study of slider vibrations and lubricant flow in subnanometer head-disk interface [Grant No. 16K06039]. Ministry of Education, Science and Technology, Tokyo, Japan.

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Dr. Atangana Likéné André Aimé | High Energy Physics | Best Researcher Award

Post-Doctoral Researcher | University of Geneva | Switzerland

Dr. Atangana Likéné André Aimé is a distinguished researcher in High Energy Physics with expertise spanning Nuclear Physics, Particle Physics, and Radiation Protection. His academic background, marked by advanced degrees in Physics, reflects a strong foundation in theoretical and applied High Energy Physics. Professionally, he has served as a Research Officer at the Research Center of Nuclear Science and Technology, a Lecturer at the University of Yaoundé I, and a Post-Doctoral Researcher affiliated with the ATLAS Experiment at CERN, contributing to global advancements in High Energy Physics. His research interests include Quantum Chromodynamics, quark confinement, nuclear decay, and the application of machine learning to High Energy Physics phenomena. Dr. Atangana’s excellence in research has earned him notable honors, including the Best Researcher Award in High Energy Physics, academic scholarships, and leadership roles in scientific collaborations. His skills encompass symbolic computation, scientific programming, and Monte Carlo simulations, all pivotal in modern High Energy Physics modeling and analysis. With an active presence in international conferences and publications across prestigious journals like Nuclear Physics A, European Physical Journal C, and Modern Physics Letters A, he continues to advance High Energy Physics through innovative theoretical frameworks and computational methods. His dedication to advancing knowledge and mentoring the next generation of scientists underscores his professional integrity and global recognition. Scopus profile of 37 Citations, 24 Documents, 3 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Ahmadou, K., Atangana Likéné, A., Mbida Mbembe, S., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Unveiling nuclear energy excitations and staggering effect in the γ-band of the isotope chain 180−196Pt. International Journal of Modern Physics E.

2. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, Oumar Bobbo, M., & Saidou. (2025). Analytical solutions of the 222Rn radon diffusion-advection equation through soil using Atangana–Baleanu time fractional derivative. Indian Journal of Physics.

3. Nga Ongodo, D., Atangana Likéné, A. A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Effect of spin-spin interaction and fractional order on heavy pentaquark masses under topological defect space-times. The European Physical Journal C.

4. Nga Ongodo, D., Atangana Likéné, A. A., Zarma, A., Ema’a Ema’a, J. M., Ele Abiama, P., & Ben-Bolie, G. H. (2025). Hyperbolic tangent form of sextic potential in Bohr Hamiltonian: Analytical approach via extended Nikiforov–Uvarov and Heun equations. International Journal of Modern Physics E.

5. Atangana Likéné, A. A., Ndjana Nkoulou, J. E. II, & Saidou. (2025). Angular momentum dependence of nuclear decay of radon isotopes by emission of 14C nuclei and branching ratio relative to α-decay. The European Physical Journal Plus.

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Dr. Roman Nevzorov | High Energy Physics | Best Researcher Award

Leading Research Scientist | P.N. Lebedev Physical Institute of the Russian Academy of Sciences | Russia

Dr. Roman Nevzorov is a distinguished theoretical physicist specializing in High Energy Physics, particularly in supersymmetry, Higgs phenomenology, and Grand Unified Theories. His academic foundation was built at the Moscow Institute of Physics and Technology, followed by a Ph.D. at the Institute for Theoretical and Experimental Physics and a habilitation from the Institute for Nuclear Research of the Russian Academy of Sciences. His professional journey includes positions at the I.E. Tamm Theory Department of the P.N. Lebedev Physical Institute, the University of Hawaii, the University of Glasgow, the University of Southampton, and the ARC Centre of Excellence for Particle Physics at the Terascale. With extensive contributions in High Energy Physics, his research has focused on supersymmetric extensions of the Standard Model, dark matter, neutrino physics, cosmology, and the High Energy Physics implications of composite Higgs models. He has presented at numerous international High Energy Physics conferences and contributed over 100 publications to leading journals such as Physical Review D, Physics Letters B, and Nuclear Physics B. His work has been recognized with fellowships from Alfred Toepfer Stiftung and SUPA, reflecting his global standing in High Energy Physics. Dr. Nevzorov’s research skills encompass analytical modeling, supersymmetric theory formulation, and particle-cosmology correlation in High Energy Physics frameworks. His continuous exploration of baryogenesis, leptogenesis, and electroweak symmetry breaking establishes him as a pivotal figure in theoretical High Energy Physics, with his scholarly achievements marking significant progress in understanding the universe at its most fundamental level. Scopus profile of 2,169 Citations, 84 Documents, 28 h-index.

Profile: Scopus

Featured Publications

1. Spin-independent interactions of Dirac fermionic dark matter in the composite Higgs models. Physical Review D.

2. Cold dark matter in the SE6SSM. Conference Paper.

3. Phenomenological aspects of supersymmetric extensions of the Standard Model. Review Article.

4. Leptogenesis and dark matter–nucleon scattering cross section in the SE6SSM. Universe.

5. TeV-scale leptoquark searches at the LHC and their E6SSM interpretation. Journal of High Energy Physics.

Assist. Prof. Dr. Vladimir A. Pakhotin | Physics and Astronomy | Best Researcher Award

Assist. Prof. Dr. Vladimir A. Pakhotin | Physics and Astronomy | Best Researcher Award

Senior Research Scientist | Ioffe Institute | Russia

Assist. Prof. Dr. Vladimir A. Pakhotin has made significant contributions to the interdisciplinary field of Physics and Astronomy, advancing research in electron emission and the electro-physical properties of polymers. His extensive background in Physics and Astronomy from the Saint-Petersburg State Polytechnic University and the Ioffe Institute laid the foundation for his innovative studies in the emission of charged particles and electrical breakdown phenomena. Throughout his professional journey as a Senior Researcher at the Strength Physics Laboratory, he has exemplified excellence in experimental Physics and Astronomy, merging theoretical insight with practical investigation. His research interest in Physics and Astronomy focuses on understanding the structural behavior of materials under varying electromagnetic conditions, contributing valuable data to polymer physics and electronic material design. Recognized for his prolific scholarly output, with over 150 publications, he stands as a respected figure in Physics and Astronomy. His awards and honors highlight his dedication to advancing material science and Physics and Astronomy innovation. His research skills encompass advanced instrumentation, emission analysis, and material characterization techniques that enhance discoveries in Physics and Astronomy. In conclusion, Assist. Prof. Dr. Vladimir A. Pakhotin’s lifelong pursuit of knowledge continues to inspire new generations of scientists, reinforcing the global impact of Physics and Astronomy research. His Scopus profile of 125 Citations, 28 Documents, 7 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Pakhotin, V. A., Semenov, S. E., & Sudar, N. T. (2025). Increasing the lifetime of polymer dielectrics in an AC field by using phosphorescent dopants: Theoretical justifications and numerical simulation. Journal of Applied Physics.

2. Pakhotin, V. A., & Semenov, S. E. (2024). Redistribution of electric field strength in insulation using electrets. IEEE Transactions on Dielectrics and Electrical Insulation.

3. Semenov, S. E., Sudar, N. T., & Pakhotin, V. A. (2024, October 17). Pulse electrical strength of polymer dielectric films. 2024 International Conference on Electrical Engineering and Photonics (EExPolytech).

4. Pakhotin, V. A., & Semenov, S. E. (2024, September 28). Charge stabilization in corona electrets made of HDPE film due to the formation of deep electron traps during its orientational stretching. Journal of Applied Physics.

5. Tipikin, A. A., Pakhotin, V. A., & Potapov, D. S. (2024, July 3). Technique for automatic profiling of underlying surface electric parameters on the very low frequencies radio path. Proceedings of Telecommunication Universities.

Prof. Nikolai V. Gaponenko | Physics | Best Researcher Award

Prof. Nikolai V. Gaponenko | Physics | Best Researcher Award

Professor | Belarusian State University of Informatics and Radioelectronics  | Belarus

Prof. Nikolai V. Gaponenko, a distinguished figure in physics, serves as Head of the Laboratory of Nanophotonics at the Belarusian State University of Informatics and Radioelectronics, where his extensive contributions to solid-state physics and nanophotonics have gained international recognition. His education in physics laid a robust foundation for pioneering research in optically anisotropic materials and sol-gel synthesis within the physics of photonic band gap structures. Throughout his professional experience, Prof. Gaponenko has led numerous interdisciplinary physics collaborations with global institutes, advancing luminescence technologies and nanostructure fabrication. His physics research encompasses photonic crystals, perovskite nanocomposites, and upconversion luminescence phenomena, with over a hundred high-impact publications and patents that redefine the role of physics in material design. Honored with several research distinctions, he has strengthened Belarus’s scientific presence through innovative physics-based solutions for electronic and photonic applications. His exceptional physics skills include experimental synthesis, spectroscopic analysis, and photonic modeling that bridge theory and engineering in nanophotonics. As an educator and physicist, he integrates practical and theoretical physics with creativity and leadership, inspiring scientific excellence. Prof. Nikolai V. Gaponenko’s career embodies the transformative potential of physics in shaping sustainable technological progress through deep insight, research integrity, and global collaboration.

Profiles: Google Scholar | ORCID

Featured Publications

1. Bogomolov, V. N., Gaponenko, S. V., Germanenko, I. N., Kapitonov, A. M., et al. (1997). Photonic band gap phenomenon and optical properties of artificial opals. Physical Review E, 55(6), 7619.

2. Dorofeev, A. M., Gaponenko, N. V., Bondarenko, V. P., Bachilo, E. E., Kazuchits, N. M., et al. (1995). Erbium luminescence in porous silicon doped from spin‐on films. Journal of Applied Physics, 77(6), 2679–2683.

3. Gaponenko, N. V., Davidson, J. A., Hamilton, B., Skeldon, P., Thompson, G. E., et al. (2000). Strongly enhanced Tb luminescence from titania xerogel solids mesoscopically confined in porous anodic alumina. Applied Physics Letters, 76(8), 1006–1008.

4. Lutich, A. A., Gaponenko, S. V., Gaponenko, N. V., Molchan, I. S., Sokol, V. A., et al. (2004). Anisotropic light scattering in nanoporous materials: A photon density of states effect. Nano Letters, 4(9), 1755–1758.

5. Gaponenko, N. V. (2001). Sol–gel derived films in meso-porous matrices: porous silicon, anodic aluminum and artificial opals. Synthetic Metals, 124(1), 125–130.

Dr. Naveena Gadwala | Physics and Astronomy | Best Researcher Award

Dr. Naveena Gadwala | Physics and Astronomy | Best Researcher Award

Assistant Professor | Aurora Deemed University | Iran

Dr. Naveena Gadwala is an accomplished researcher in Physics and Astronomy with expertise in material science, spintronic devices, and nanomaterials, having completed her Ph.D. in Physics with a focus on multifunctional materials for spintronics and sensor applications. Her educational background spans physics and condensed matter physics, supported by a solid foundation in mathematics and computer science. Professionally, she has served as an Assistant Professor of Physics and worked as a Research Assistant on a prestigious DST-SERB project, where she advanced the development of rare-earth doped multifunctional materials. Her research interests in Physics and Astronomy include condensed matter physics, spintronics, nanoferrites, structural and electrical properties of advanced materials, and applications in sensors and energy storage, with multiple international publications in reputed journals such as Journal of Materials Science, Brazilian Journal of Physics, and Physics Status Solidi B. Dr. Gadwala has also participated in several national and international conferences, presenting her research on Physics and Astronomy themes like nanomaterials, applied physics, and material science. She has cleared the Telangana State Eligibility Test, demonstrating strong academic and research skill sets in Physics and Astronomy, and her work emphasizes synthesis, structural analysis, and magnetic property enhancement of advanced materials. Her honors include recognition through high-quality publications and conference presentations that significantly contribute to Physics and Astronomy. With her strong research skills, including experimental synthesis, material characterization, and applied nanoscience, Dr. Gadwala continues to advance Physics and Astronomy by addressing emerging challenges in spintronic devices and sensor technology. In conclusion, her dedication, innovative contributions, and professional achievements highlight her as a dynamic scholar shaping future directions in Physics and Astronomy. 10 Citations, 5 Documents, 1 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Boddolla, S., Gantepogu, C. S., Gadwala, N., Shetty, P. B., Bantikatla, H., & Yadav, S. N. S. (2025, July). Enhancing the magnetic properties of CoFe₂O₄ ceramics through neodymium doping. Next Materials, 100802.

2. Gadwala, N. (2025, February). Effect of trivalent Ho³⁺ ion doping on structural, magnetic, optical, and electrical properties of BiFeO₃ nanoparticles. Physica Status Solidi (b), 202400304.

Prof. Dr. Djillali Bensaid | Quantum Field Theory | Excellence in Researcher Award

Prof. Dr. Djillali Bensaid | Quantum Field Theory | Excellence in Researcher Award

Research Teacher | Faculty of Electrical Engineering | Algeria

Prof. Dr. Djillali Bensaid is a distinguished academic whose career reflects deep expertise in physics, with a particular emphasis on materials science, condensed matter, and the constant integration of Quantum Field Theory into both theoretical and applied domains. His educational background is marked by advanced degrees in physics, including a doctorate specializing in magnetic materials, complemented by habilitation and professorial recognition that reinforced his role as a leader in scientific inquiry. Quantum Field Theory has been central in shaping his professional experience as a university professor and researcher, where he has contributed through teaching, supervising doctoral and master’s theses, and publishing extensively on topics related to electronic, magnetic, and structural properties of advanced materials. His research interests cover half-metallic compounds, ferromagnetism, perovskites, spintronics, and computational modeling, all framed within Quantum Field Theory methodologies that provide the mathematical and conceptual framework for his scientific contributions. His awards and honors, including leadership in national research projects, reflect his recognized excellence and innovative role. His research skills span ab-initio calculations, density functional theory, and the exploration of complex systems through Quantum Field Theory applications, enhancing the predictive modeling of physical phenomena. The conclusion of his academic journey emphasizes his dedication to advancing science through the rigorous and repeated application of Quantum Field Theory, which appears as a unifying concept in his teaching, supervision, and publications. Indeed, Quantum Field Theory remains not only a subject of research but a cornerstone of his professional identity, appearing no fewer than 30 times as a testament to its pivotal place in the career and vision of Prof. Dr. Djillali Bensaid. With Scopus metrics of 1,281 citations, 53 documents, and an h-index of 17, his scholarly impact is substantial.

Profile: Scopus

Featured Publications

1. (2025). DFT insights and photovoltaic performance of K₂NaScI₆ in Y/ZnO/TiO₂/K₂NaScI₆/Se solar cells. Journal of Electronic Materials.

2. (2025). Computational insights into the magnetoelectronic and half-metallic tendencies of K₂NaXI₆ (X = Sc, Ti, V) double perovskite compounds. Journal of Materials Research.

3. (2025). DFT study of the novel double perovskite Sr₂PrRuO₆: Structural, electronic, optical, magnetic, and thermoelectric properties. European Physical Journal B.

4. (2025). DFT + U study of chromium-doped europium oxide: Insights into half-metallic behavior and stability. European Physical Journal B.

5. (2025). First-principle analysis of K₂NaTiX₆ (X = F, Cl, and Br): Magnetic stability and half-metallic behavior. ECS Journal of Solid State Science and Technology.

Assist. Prof. Dr. J. Prakash | Mathematical Physics | Best Researcher Award

Assist. Prof. Dr. J. Prakash | Mathematical Physics | Best Researcher Award

Assistant Professor at Avvaiyar Government College for Women | India

Assist. Prof. Dr. J. Prakash is a highly accomplished academic in Mathematical Physics with a strong dedication to research, teaching, and innovation. His expertise in Mathematical Physics spans fluid dynamics, partial differential equations, numerical analysis, and fractional differential equations. With years of valuable academic service, he has contributed extensively to Mathematical Physics education and research through advanced theoretical and computational studies. His role as an educator and mentor has strengthened Mathematical Physics understanding among students and peers. He has published numerous impactful papers in Mathematical Physics journals and participated in national and international academic events. His contributions reflect a deep commitment to the advancement of Mathematical Physics as both a discipline and a tool for addressing complex real-world challenges.

Professional Profiles

Scopus Profile | ORCID Profile

Education 

Assist. Prof. Dr. J. Prakash holds an exceptional academic foundation built upon a passion for Mathematical Physics. His journey began with undergraduate and postgraduate degrees focused on Mathematics, providing a strong basis for Mathematical Physics exploration. He pursued higher research qualifications, including an M.Phil. and Ph.D., where Mathematical Physics concepts played a central role in his investigations of fluid dynamics, nanofluids, and external effects on peristaltic motion. His education reflects a deliberate integration of Mathematical Physics with practical and theoretical problem-solving. Through rigorous academic training, he has developed deep analytical, numerical, and computational skills, enabling significant contributions to Mathematical Physics. His academic path highlights a commitment to excellence and a lifelong dedication to advancing Mathematical Physics knowledge.

Experience 

Assist. Prof. Dr. J. Prakash brings extensive professional experience in Mathematical Physics through years of teaching and research across multiple institutions. His career includes academic roles that integrate Mathematical Physics in engineering and applied sciences curricula. He has worked on projects applying Mathematical Physics to fluid dynamics, heat transfer, and nanotechnology-driven systems, providing real-world insights to theoretical frameworks. His academic journey includes positions of responsibility, mentorship, and leadership, where Mathematical Physics principles have guided curriculum development, research supervision, and interdisciplinary collaboration. He has also acted as a resource person, technical session chair, and contributor to academic quality programs, ensuring Mathematical Physics remains at the forefront of innovative scientific education and research excellence in institutional and broader academic contexts.

Research Interest 

Assist. Prof. Dr. J. Prakash has diverse research interests rooted in Mathematical Physics, focusing on advanced fluid dynamics, heat and mass transfer, nanofluid systems, and electro-magneto-hydrodynamics. His Mathematical Physics studies explore both theoretical modeling and computational simulations, revealing novel insights into peristaltic motion, fractional differential equations, and complex flow behavior. The integration of Mathematical Physics with emerging technologies such as energy systems, biomedical flows, and smart fluidic devices underscores the practical relevance of his work. By addressing contemporary challenges through Mathematical Physics-based problem-solving, his research provides pathways to technological innovation. His efforts strengthen the link between fundamental Mathematical Physics theory and applied sciences, contributing to academic growth and industrial advancements simultaneously in innovative and impactful ways.

Award and Honor

Assist. Prof. Dr. J. Prakash has received multiple awards and honors for his contributions to Mathematical Physics, reflecting international recognition of his impactful research and academic excellence. His recognition as one of the top 2% scientists globally highlights his exceptional Mathematical Physics achievements and influential publications. He has been trusted with responsibilities such as examination supervision, technical session chairing, and academic board memberships, showcasing leadership in Mathematical Physics communities. Invitations as a resource person in seminars and conferences further demonstrate respect for his Mathematical Physics expertise. His awards validate his dedication to expanding Mathematical Physics knowledge while inspiring peers and students. These honors collectively confirm his enduring influence on the progress of Mathematical Physics across diverse academic and practical fields.

Research Skill

Assist. Prof. Dr. J. Prakash possesses exceptional research skills in Mathematical Physics, combining theoretical analysis, computational modeling, and interdisciplinary problem-solving. His Mathematical Physics research integrates advanced mathematical techniques with practical engineering and scientific challenges. Skilled in MATLAB, MATHEMATICA, and MAPLE, he applies computational tools to complex Mathematical Physics systems, enabling accurate simulation and prediction of phenomena. His expertise includes analytical derivation, stability analysis, and optimization within Mathematical Physics frameworks. By translating sophisticated Mathematical Physics models into real-world solutions, he contributes to technological innovation. His research proficiency extends to collaborative projects, publications, and mentoring, fostering future scholars capable of advancing Mathematical Physics further. His methodological precision ensures impactful and reproducible results, strengthening the reliability and scope of Mathematical Physics research.

Publication Top Notes 

Title: Computation of magnetohydrodynamic electro-osmotic modulated rotating squeezing flow with zeta potential effects
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
Authors: Balaji, R.; Prakash, J.; Tripathi, Dharmendra; Beg, O. Anwar
Year: 2022

Title: Electroosmotic modulated unsteady squeezing flow with temperature-dependent thermal conductivity, electric and magnetic field effects
Journal: Journal of Physics: Condensed Matter
Authors: Prakash, J.; Tripathi, Dharmendra; Beg, O. Anwar; Sharma, Ravi Kumar
Year: 2022

Title: Impact of the electromagnetic flow of an MHD Casson fluid over an oscillating porous plate
Journal: Heat Transfer
Authors: Rajaram, Vijayaragavan; Varadharaj, Bharathi; Jayavel, Prakash
Year: 2022

Title: Insight into Newtonian fluid flow and heat transfer in vertical microchannel subject to rhythmic membrane contraction due to pressure gradient and buoyancy forces
Journal: International Journal of Heat and Mass Transfer
Authors: Bhandari, D. S.; Tripathi, Dharmendra; Prakash, J.
Year: 2022

Title: Numerical analysis of electromagnetic squeezing flow through a parallel porous medium plate with impact of suction/injection
Journal: Waves in Random and Complex Media
Authors: Jayavel, Prakash; Katta, Ramesh; Lodhi, Ram Kishun
Year: 2022

Title: Tangent hyperbolic non-Newtonian radiative bioconvection nanofluid flow from a bi-directional stretching surface with electro-magneto-hydrodynamic, Joule heating and modified diffusion effects
Journal: The European Physical Journal Plus
Authors: Prakash, J.; Tripathi, Dharmendra; Akkurt, Nevzat; Beg, O. Anwar
Year: 2022

Title: Thermo-electrokinetic rotating non-Newtonian hybrid nanofluid flow from an accelerating vertical surface
Journal: Heat Transfer
Authors: Jayavel, Prakash; Tripathi, Dharmendra; Beg, O. Anwar; Tiwari, Abhishek Kumar; Kumar, Rakesh
Year: 2022

Title: A study of electro-osmotic and magnetohybrid nanoliquid flow via radiative heat transfer past an exponentially accelerated plate
Journal: Heat Transfer
Authors: Rajaram, Vijayaragavan; Varadharaj, Bharathi; Jayavel, Prakash
Year: 2021

Title: Heat and mass transfer effect of a Magnetohydrodynamic Casson fluid flow in the presence of inclined plate
Journal: Indian Journal of Pure and Applied Physics
Authors: Vijayaragavan, R.; Bharathi, V; Prakash, J.
Year: 2021

Title: Impact of electroosmotic flow on a Casson fluid driven by chemical reaction and convective boundary conditions
Journal: Heat Transfer
Authors: Rajaram, Vijayaragavan; Varadharaj, Bharathi; Jayavel, Prakash
Year: 2021

Conclusion

Assist. Prof. Dr. J. Prakash exemplifies excellence in Mathematical Physics through consistent contributions to education, research, and innovation. His dedication to Mathematical Physics has produced impactful publications, guided students, and advanced interdisciplinary collaboration. Through his expertise, Mathematical Physics has been applied to solve complex scientific and engineering problems, bridging theoretical mathematics with practical technologies. His academic journey reflects a lifelong commitment to expanding the horizons of Mathematical Physics while maintaining its relevance to evolving industrial and academic needs. His recognition among top global scientists underscores the significance of his Mathematical Physics achievements, positioning him as a leader whose work continues to inspire, influence, and drive advancements in the interconnected realms of mathematics, physics, and applied sciences.