Dr. Liping Gong | Mechanical engineering | Best Researcher Award
Associate Research Fellow | University of Wollongong | Australia
Dr. Liping Gong is a distinguished researcher in the field of mechanical engineering, demonstrating exceptional expertise in advanced materials, vibration control, and energy harvesting systems. He earned his Doctor of Philosophy in mechanical engineering from the University of Wollongong, Australia, where his work received the Examiners’ Commendation for Outstanding Thesis. His academic foundation in mechanical engineering was strengthened by a Bachelor’s degree in Engineering Mechanics from Chang’an University, China. As a Postdoctoral Research Fellow, he has made significant strides in developing shear-stiffening phononic crystals through stereolithography for vibration and acoustic applications, alongside mentoring students in material characterization and finite element modeling—core skills in mechanical engineering research. His contributions span the design of magnetorheological elastomers, liquid metal-based nanogenerators, and intelligent materials for energy harvesting, reflecting innovation across various mechanical engineering domains. Dr. Gong’s research in mechanical engineering has been published in top-tier journals such as Advanced Materials, Nano Energy, and Smart Materials and Structures. His dedication has been recognized with the Best Oral Presentation Award at international mechanical engineering conferences. His research skills encompass experimental design, data analysis, material fabrication, and computational modeling—crucial aspects of mechanical engineering advancement. With deep involvement in reviewing for international journals, Dr. Gong continues to contribute to global mechanical engineering excellence. His professional journey highlights a commitment to innovation, interdisciplinary collaboration, and scientific impact within mechanical engineering.Google Scholar profile of 301 Citations, 7 h-index, 7 i10-index.
Profile: Google Scholar
Featured Publications
1. Wang, S., Gong, L., Shang, Z., Ding, L., Yin, G., Jiang, W., Gong, X., & Xuan, S. (2018). Novel safeguarding tactile e‐skins for monitoring human motion based on SST/PDMS–AgNW–PET hybrid structures. Advanced Functional Materials, 28(18), 1707538.
2. Zhang, Q., Lu, H., Yun, G., Gong, L., Chen, Z., Jin, S., Du, H., Jiang, Z., & Li, W. (2024). A laminated gravity‐driven liquid metal‐doped hydrogel of unparalleled toughness and conductivity. Advanced Functional Materials, 34(31), 2308113.
3. Wu, H., Gong, N., Yang, J., Gong, L., Li, W., & Sun, S. (2024). Investigation of a semi-active suspension system for high-speed trains based on magnetorheological isolator with negative stiffness characteristics. Mechanical Systems and Signal Processing, 208, 111085.
4. Gong, L., Xuan, T., Wang, S., Du, H., & Li, W. (2023). Liquid metal based triboelectric nanogenerator with excellent electrothermal and safeguarding performance towards intelligent plaster. Nano Energy, 109, 108280.
5. Jin, S., Yang, J., Sun, S., Deng, L., Chen, Z., Gong, L., Du, H., & Li, W. (2023). Magnetorheological elastomer base isolation in civil engineering: a review. Journal of Infrastructure Intelligence and Resilience, 2(2), 100039.