Dr. Shanshan Wang | Post Quantum Security | Best Researcher Award

Dr. Shanshan Wang | Post Quantum Security | Best Researcher Award

Teacher | Sichuan University of Arts and Science | China

Dr. Shanshan Wang is a dedicated researcher specializing in information and communication engineering with a strong academic background that includes a Master’s degree in computer technology and a Ph.D. in the field with a focus on space-ground integrated networks and quantum access authentication. Her professional experience includes teaching at the University of Arts and Sciences and leading and contributing to several significant projects on integrated network security, SDN-based mobile core networking, and satellite communication protocols. Her research achievements are widely recognized, particularly in the area of Post quantum security, where she has published impactful works on lightweight authentication, anonymous Post quantum security mechanisms, lattice-based cryptography, and NTRU-based schemes, advancing the resilience of satellite and integrated networks. Dr. Shanshan Wang’s contributions consistently emphasize Post quantum security as a foundation for next-generation communication systems, with applications ranging from vehicular networks to low-earth-orbit satellites. She has earned honors through her role as a lead and backbone researcher in provincial, municipal, and corporate projects, reflecting her expertise and recognition in the scientific community. Her research skills span quantum authentication, network routing mechanisms, cryptographic protocol design, and security embedded architectures, all of which are strongly tied to the advancement of Post quantum security solutions. Dr. Shanshan Wang’s work is deeply aligned with the evolving demands of global communication infrastructures, and her continuing commitment to innovation in Post quantum security underscores her role as a leading figure shaping the future of secure network technologies.

Profile: Scopus

Featured Publication

1. APQA: An anonymous post quantum access authentication scheme based on lattice for space ground integrated network. (2025). Computer Networks.

Dr. Prity Kumari | Mathematics | Women Researcher Award

Dr. Prity Kumari | Mathematics | Women Researcher Award

PhD scholar | National Institute of Technology | India

Dr. Prity Kumari is an accomplished researcher in Mathematics with expertise in graph theory, combinatorics, cryptography, wireless sensor networks, and machine learning, demonstrating a strong academic and professional foundation through advanced studies and significant teaching experience in engineering mathematics, numerical methods, and discrete mathematics. Her doctoral work focused on the application of combinatorial design in wireless sensor networks, reflecting her depth in both theoretical and applied Mathematics. She has published impactful research in reputed SCIE and Q1/Q2 journals, contributing to key areas like group key management, cryptographic security, and re-keying prediction models using Mathematics-driven combinatorial and machine learning approaches. With fellowships, merit-based scholarships, and active participation in national-level workshops on post-quantum cryptography, cyber security, and Mathematics for machine learning, she has broadened her expertise and collaborative exposure. Dr. Prity Kumari has also enriched her professional skills through roles as a Mathematics faculty and teaching assistant, guiding learners in foundational and advanced topics of Mathematics. Her research skills highlight proficiency in combinatorial design, cryptographic applications, algorithmic development, and predictive modeling, aligning with cutting-edge directions in Mathematics and computer science. Awards, honors, and fellowships further strengthen her academic profile, demonstrating excellence and commitment. Beyond research, she engaged in leadership roles like hostel representative, reflecting organizational and interpersonal abilities. In conclusion, Dr. Prity Kumari embodies a Mathematics scholar whose contributions interconnect combinatorial structures, cryptographic security, and applied computational methods, making her a valuable academic and researcher with strong potential for further advancing the field of Mathematics.

Profiles: Google Scholar | ORCID

Featured Publications

1. Kumari, P., & Singh, K. R. (2024). Re-keying analysis in group key management of wireless sensor networks. Cryptography and Communications, 16(3), 665–677.

2. Mandal, R. K. P. K. N. R. D. S. S. K. (2024). Experimental comparison of pool boiling characteristics between CNT, GO, and CNT + GO-coated copper substrate. Heat Transfer. Advance online publication.

3. Kumar, P. K. K. R. S. R. (2025). Stacking ensemble algorithm to predict re-keying in group key management. Arabian Journal for Science and Engineering, 1–15.

4. Pegu, J., Singh, K. R., Kumari, P., & Mishra, V. N. (2025). Decomposition of corona graph. Filomat, 39(10), 3321–3328.

5. Kumari, P., & Singh, K. R. (2025). Re-keying in group key management for wireless sensor network using nested balanced incomplete block designs. IETE Journal of Research, 1–13.

Dr. Akinbo Bayo Johnson | Mathematics | Best Researcher Award

Dr. Akinbo Bayo Johnson | Mathematics | Best Researcher Award

Senior Lecturer | Federal College of Education, Abeokuta, Nigeria and Postdoctoral researcher at Universidade Federal De Itajuba | Brazil 

Dr. Akinbo Bayo Johnson is a distinguished scholar in applied mathematics whose expertise spans fluid dynamics, entropy generation, nano and non-Newtonian fluids, thermodynamic models, and computational mathematics. With a Ph.D. in applied mathematics and solid foundations from advanced studies in mathematics, his academic journey has been dedicated to advancing theoretical and applied aspects of mathematics. He has served as a lecturer, senior researcher, and currently contributes as a postdoctoral researcher in Brazil, showcasing professional experience across teaching, supervision, and international research collaborations. His research interests are deeply rooted in mathematics, where he explores bioconvectional fluids, heat and mass transfer, and mathematical modeling, all of which have resulted in impactful publications in high-ranking journals. Dr. Akinbo has been honored with awards such as the Best Paper Award, Tetfund Postdoctoral Award, and multiple recognitions from scientific associations, reflecting his excellence in mathematics-driven research. His professional memberships in the Mathematical Association of Nigeria and related bodies further highlight his integration within the mathematics community. Skilled in MATHEMATICA programming and computational approaches, he has applied mathematics extensively in solving differential equations, thermodynamic systems, and fluid mechanics problems. His career demonstrates consistent contributions as a reviewer for international journals, strengthening the dissemination of mathematical knowledge. Overall, Dr. Akinbo Bayo Johnson embodies a commitment to mathematics through education, research, and professional service, and his dedication ensures that mathematics remains a vital tool in addressing complex scientific challenges while inspiring the next generation of mathematics researchers.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. Akinbo, B. J., & Olajuwon, B. I. (2023). Impact of radiation and heat generation/absorption in a Walters’ B fluid through a porous medium with thermal and thermo diffusion in the presence of chemical reaction. International Journal of Modelling and Simulation, 43(2), 87–100.

2. Akinbo, B. J., & Olajuwon, B. I. (2021). Impact of radiation and chemical reaction on stagnation-point flow of hydromagnetic Walters' B fluid with Newtonian heating. International Communications in Heat and Mass Transfer, 121, 105115.

3. Akinbo, B. J., & Olajuwon, B. I. (2019). Homotopy analysis investigation of heat and mass transfer flow past a vertical porous medium in the presence of heat source. International Journal of Heat & Technology, 37(3).

4. Akinbo, B. J., & Olajuwon, B. I. (2021). Radiation and thermal-diffusion interaction on stagnation-point flow of Walters' B fluid toward a vertical stretching sheet. International Communications in Heat and Mass Transfer, 126, 105471.

5. Akinbo, B. J., & Olajuwon, B. I. (2021). Heat transfer analysis in a hydromagnetic Walters' B fluid with elastic deformation and Newtonian heating. Heat Transfer, 50(3), 2033–2048.

6. Akinbo, B. J., Faniran, T., & Ayoola, E. O. (2015). Numerical solution of stochastic differential equations. International Journal of Advanced Research in Science, Engineering and Technology.

7. Akinbo, B. J., & Olajuwon, B. I. (2019). Heat and mass transfer in magnetohydrodynamics (MHD) flow over a moving vertical plate with convective boundary condition in the presence of thermal radiation. Sigma Journal of Engineering and Natural Sciences, 37(3), 1031–1053.

8. Akinbo, B. (2021). Influence of convective boundary condition on heat and mass transfer in a Walters’ B fluid over a vertical stretching surface with thermal-diffusion effect. Journal of Thermal Engineering, 7(7), 1784–1796.

9. Akinbo, B. J., & Olajuwon, B. I. (2019). Convective heat and mass transfer in electrically conducting flow past a vertical plate embedded in a porous medium in the presence of thermal radiation and thermo diffusion. Computational Thermal Sciences: An International Journal, 11(4).

10. Akinbo, B. J., & Olajuwon, B. I. (2025). Significance of Cattaneo-Christov heat flux model and heat generation/absorption with chemical reaction in Walters’ B fluid via a porous medium in the presence of Newtonian heating. International Journal of Modelling and Simulation, 45(1), 137–146.

Dr. hardeep kaur | Experimental Methods | Best Researcher Award

Dr. Hardeep kaur | Experimental Methods | Best Researcher Award

Assistant Professor at Khalsa College | India

Dr. Hardeep kaur is a dedicated researcher in organic chemistry with expertise in drug discovery, fluorescence probes, and computational studies. Through innovative Experimental Methods, she integrates traditional synthesis with in silico modeling to address health challenges like malaria and tuberculosis. Her work on molecular recognition of heavy metals and biological targets highlights the power of Experimental Methods in both diagnostics and therapeutics. As an assistant professor at khalsa college, she combines academic guidance, mentoring, and research leadership with extensive use of Experimental Methods. Her collaborations have advanced applied chemistry, bridging theoretical understanding with practical Experimental Methods. Her consistent contributions and awards demonstrate excellence and dedication, reflecting her continuous pursuit of innovation through rigorous Experimental Methods.

Professional Profiles 

Scopus Profile | ORCID Profile

Education 

Dr. Hardeep kaur holds a strong academic foundation in chemistry, with advanced training that shaped her expertise in Experimental Methods. From undergraduate honors to postgraduate specialization and doctoral research, her education emphasized organic synthesis, molecular design, and mechanistic studies through Experimental Methods. Guided by leading chemists, she developed skills in complex reaction pathways, spectroscopic analysis, and computational approaches that rely heavily on Experimental Methods. Her academic journey refined critical thinking and innovative strategies, incorporating both theoretical principles and Experimental Methods to solve chemical and biological challenges. This solid educational background empowers her to teach, supervise, and inspire future scientists while continuing her own research through advanced Experimental Methods in organic and medicinal chemistry.

Experience 

Assistant professor at khalsa college, Dr. Hardeep kaurhas excelled in teaching, research, and departmental leadership using Experimental Methods as a central tool. She manages academic programs, oversees innovation initiatives, and contributes to institutional committees while guiding students in Experimental Methods. Her professional journey includes supervising numerous postgraduate theses and coordinating seminars, ensuring students develop hands-on skills with modern Experimental Methods. She actively collaborates with academic and industrial partners to translate Experimental Methods into practical solutions, fostering interdisciplinary projects. This extensive professional experience demonstrates her capacity to merge classroom instruction, administrative leadership, and high-impact research into a seamless practice of chemistry through consistent application of Experimental Methods.

Research Interest 

Dr. Hardeep kaur’s research interests revolve around drug discovery, bioactive heterocycles, molecular sensors, and computational chemistry, all enriched by Experimental Methods. She focuses on designing antiplasmodial and antimycobacterial compounds, employing Experimental Methods to optimize synthesis and evaluate biological mechanisms. Her work on fluorescence probes for heavy metal detection utilizes Experimental Methods to develop selective and sensitive systems for environmental and biomedical use. Additionally, her research explores Density Functional Theory (DFT) to complement Experimental Methods, providing mechanistic insight. By integrating Experimental Methods with theoretical modeling, her investigations advance both academic understanding and translational applications in medicinal chemistry, environmental sensing, and advanced material development, maintaining Experimental Methods as a foundation of her scientific contributions.

Award and Honor

Dr. Hardeep kaur has earned recognition for academic excellence, impactful research, and innovation in chemistry, highlighting her skill in Experimental Methods. Her honors include gold medals, competitive fellowships, and international article citations that showcase the influence of her Experimental Methods-based discoveries. Highly cited works on antimalarial hybrids and chemical sensors confirm the global relevance of her Experimental Methods in both healthcare and analytical sciences. Prestigious awards from scientific societies acknowledge her leadership and innovative approaches that combine creativity with rigorous Experimental Methods. Through national and international appreciation, her career reflects a consistent pattern of achievement, driven by precise, reproducible, and groundbreaking Experimental Methods that set benchmarks in modern organic and medicinal chemistry.

Research Skill

Dr. Hardeep kaur possesses advanced research skills in organic synthesis, analytical techniques, and computational modeling, all grounded in Experimental Methods. She is proficient with spectroscopic tools, chromatographic systems, and molecular docking programs, applying Experimental Methods to characterize compounds, validate hypotheses, and interpret biological activities. Her ability to manage sensitive reagents, inert atmospheres, and reaction optimization demonstrates mastery in practical Experimental Methods. Additionally, her integration of data analysis, visualization, and presentation ensures Experimental Methods translate into impactful publications and collaborations. This comprehensive skill set allows her to solve complex chemical problems, mentor future researchers, and develop novel strategies, all underpinned by her expertise in Experimental Methods that bridge innovation and reproducibility.

Publication Top Notes 

Title: Development of sensitive napthaquinone-pyridine hydrazone based chemosensor for the colorimetric detection of Cu2+ ion in an aqueous solution
Year: 2025
Citations: 2

Title: Exploring the anticancer potential of Lasia spinosa rhizomes: insights from molecular docking and DFT investigations on chlorogenic acid and beyond
Year: 2024
Citations: 0

Conclusion

Dr. Hardeep kaur’s career reflects a harmonious integration of education, research, teaching, and collaboration, powered by Experimental Methods. Her dedication to advancing drug discovery, molecular sensing, and applied organic chemistry showcases the transformative potential of well-designed Experimental Methods. Through her leadership, students and colleagues gain exposure to rigorous Experimental Methods that foster innovation and integrity in science. Her achievements across academia, publications, and recognition confirm her role as a leading contributor to modern chemistry, where Experimental Methods not only support discovery but drive scientific evolution. Ultimately, her journey demonstrates how perseverance, creativity, and meticulous Experimental Methods shape impactful careers and contribute meaningfully to global scientific advancement.

Dr. Suliman Khan | Numerical Analysis | Best Researcher Award

Dr. Suliman Khan | Numerical Analysis | Best Researcher Award

Postdoctoral Fellow at Nanjing University of Aeronautics and Astronautics | China

Numerical Analysis defines the foundation of Dr. Suliman Khan’s academic journey. His summary reflects a deep commitment to exploring the complexities of Numerical Analysis in both theoretical and applied domains. With a focus on highly oscillatory problems and physics-informed models, he uses Numerical Analysis as a tool to solve challenging equations. He integrates Numerical Analysis with machine learning, structural mechanics, and PDEs modeling, creating innovative solutions to real-world problems. His vision aligns Numerical Analysis research with education, fostering critical thinking and inspiring future mathematicians. This summary illustrates how Numerical Analysis serves as the bridge between computational advancements and practical applications, enabling continuous growth in modern scientific computing, engineering collaborations, and advanced mathematical problem-solving.

Professional Profiles 

Google Scholar Profile | ORCID Profile

Education 

Dr. Suliman Khan’s education centers around mastering the field of Numerical Analysis through rigorous training and research. His academic progression reflects a sustained focus on Numerical Analysis in applied mathematics, computational mathematics, and scientific computing. He pursued advanced degrees emphasizing Numerical Analysis and integral equations with oscillatory kernels, deepening his expertise in solving complex integrals. His thesis projects and research topics demonstrate advanced Numerical Analysis techniques, bridging oscillatory integral computation with practical boundary element methods. This education path builds the analytical foundation necessary for solving PDEs, developing innovative algorithms, and contributing to global Numerical Analysis research communities. By integrating theoretical understanding with computational practice, his academic training stands as a model for excellence in Numerical Analysis education.

Experience 

Dr. Suliman Khan’s professional experience reflects an application-driven approach to Numerical Analysis across international academic and research environments. Through postdoctoral fellowships, he enhanced Numerical Analysis techniques for aerospace structures and advanced computational modeling. He engaged in teaching roles, conveying Numerical Analysis principles to undergraduate and postgraduate students, guiding them in applying Numerical Analysis methods to solve mathematical and engineering problems. His responsibilities included supervising projects, delivering specialized lectures, and contributing to research teams developing Numerical Analysis-based simulations. This combination of teaching, research, and collaboration allowed him to evolve Numerical Analysis applications in boundary integral equations, structural mechanics, and scientific computing. His professional journey continues to strengthen global connections while advancing Numerical Analysis research and its innovative applications.

Research Interest 

Dr. Suliman Khan’s research interest revolves around extending the frontiers of Numerical Analysis to address modern mathematical and engineering challenges. His primary focus includes highly oscillatory problems, integral equations, and PDE modeling through Numerical Analysis techniques. He investigates physics-informed neural networks (PINNs), using Numerical Analysis to integrate computational intelligence with differential equations. His interests span radial basis functions, structural mechanics modeling, and Euler-Bernoulli and Timoshenko beam simulations, all rooted in Numerical Analysis frameworks. He explores computational strategies that combine theoretical precision with practical scalability, ensuring Numerical Analysis remains a driving force in scientific discovery. These research directions ensure Numerical Analysis serves not only academic curiosity but also industry-relevant innovation, bridging mathematical rigor with real-world applications.

Award and Honor

Recognition of Dr. Suliman Khan’s contributions to Numerical Analysis is reflected in various awards and honors. He received prestigious scholarships and appreciation certificates acknowledging his dedication to Numerical Analysis research and teaching. His leadership roles in academic networks highlight his commitment to promoting Numerical Analysis as an essential discipline within mathematics and engineering. His efforts to integrate Numerical Analysis into computational science have earned respect among peers globally. Through continuous involvement in high-impact projects, he represents a model of professional integrity and scholarly excellence. These honors validate his vision of advancing Numerical Analysis beyond theoretical studies, contributing significantly to applied mathematics, computational modeling, and collaborative problem-solving in multidisciplinary scientific environments.

Research Skill

Dr. Suliman Khan demonstrates advanced research skills in Numerical Analysis, combining theoretical insights with computational innovation. He develops efficient algorithms for highly oscillatory integrals, applying Numerical Analysis methods to solve integral equations and boundary element problems. His skills extend to machine learning integration, where Numerical Analysis underpins physics-informed neural networks for solving PDEs. He is proficient in mathematical programming languages, simulation environments, and model validation frameworks that rely on Numerical Analysis accuracy. He applies rigorous error analysis, stability checks, and convergence testing, ensuring Numerical Analysis results meet scientific standards. These skills collectively enable groundbreaking contributions to both mathematics and engineering, proving how Numerical Analysis serves as a foundation for modern computational problem-solving.

Publication Top Notes 

Title: Comparative study on heat transfer and friction drag in the flow of various hybrid nanofluids effected by aligned magnetic field and nonlinear radiation
Year: 2021
Citation: 82

Title: Entropy generation approach with heat and mass transfer in magnetohydrodynamic stagnation point flow of a tangent hyperbolic nanofluid
Year: 2021
Citation: 69

Title: Identifying the potentials for charge transport layers free np homojunction-based perovskite solar cells
Year: 2022
Citation: 24

Title: Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells
Year: 2021
Citation: 22

Title: A well-conditioned and efficient Levin method for highly oscillatory integrals with compactly supported radial basis functions
Year: 2021
Citation: 20

Title: Approximation of Cauchy-type singular integrals with high frequency Fourier kernel
Year: 2021
Citation: 19

Title: On the evaluation of highly oscillatory integrals with high frequency
Year: 2020
Citation: 15

Title: A dual interpolation boundary face method with Hermite-type approximation for elasticity problems
Year: 2020
Citation: 13

Title: An Accurate Computation of Highly Oscillatory Integrals with Critical Points
Year: 2018
Citation: 11

Title: A well-conditioned and efficient implementation of dual reciprocity method for Poisson equation
Year: 2021
Citation: 10

Title: Approximation of oscillatory Bessel integral transforms
Year: 2023
Citation: 9

Title: Numerical Investigation of the Fredholm Integral Equations with Oscillatory Kernels Based on Compactly Supported Radial Basis Functions
Year: 2022
Citation: 6

Title: Numerical approximation of Volterra integral equations with highly oscillatory kernels
Year: 2024
Citation: 5

Title: On the evaluation of Poisson equation with dual interpolation boundary face method
Year: 2021
Citation: 5

Title: A new implementation of DRM with dual interpolation boundary face method for Poisson equation
Year: 2020
Citation: 5

Title: Interpolation based formulation of the oscillatory finite Hilbert transforms
Year: 2022
Citation: 4

Title: On the Convergence Rate of Clenshaw–Curtis Quadrature for Jacobi Weight Applied to Functions with Algebraic Endpoint Singularities
Year: 2020
Citation: 4

Title: On Numerical Computation of Oscillatory Integrals and Integral Equations with Oscillatory Kernels
Year: 2021
Citation: 3

Title: A multiscale domain decomposition approach for parabolic equations using expanded mixed method
Year: 2022
Citation: 2

Title: On Computation of Bessel and Airy Oscillatory Integral Transforms
Year: 2025
Citation: 1

Conclusion

The academic and professional path of Dr. Suliman Khan underscores the transformative power of Numerical Analysis in modern science. His contributions demonstrate how Numerical Analysis enables theoretical breakthroughs and practical engineering solutions. Through teaching, research, and collaboration, he advances Numerical Analysis from abstract computation to actionable methodologies. His dedication ensures Numerical Analysis remains at the heart of applied mathematics, computational modeling, and machine learning integration. The conclusion of this narrative reflects his commitment to leveraging Numerical Analysis for global scientific progress. His vision inspires future mathematicians to embrace Numerical Analysis not just as a field of study but as a dynamic, problem-solving tool for advancing human knowledge.

Dr. Selene Mezzalira | Psychology | Best Researcher Award

Dr. Selene Mezzalira | Psychology | Best Researcher Award

Postdoctoral fellow at University of Naples Federico II | Italy

Dr. Selene Mezzalira is an accomplished scholar in psychology with expertise spanning clinical psychology, social psychology, developmental psychology, and the integration of philosophy with psychological sciences. Her career in psychology includes a focus on trauma, mental health equity, gender diversity, and interdisciplinary approaches linking psychology with neuroscience and phenomenology. Dr. Mezzalira has collaborated internationally, leading psychology-based research groups and contributing to multiple psychology-related projects addressing stigma, health, and emotional regulation. Her psychology research reflects deep commitment to both theoretical development and practical clinical applications, with work published in high-impact psychology journals. She bridges academic research in psychology with healthcare, education, and psychotherapy practice, demonstrating how psychology can shape both scientific understanding and real-world change for diverse communities.

Professional Profiles 

Scopus Profile | ORCID Profile

Education 

Dr. Selene Mezzalira’s educational background in psychology and philosophy reflects an extensive interdisciplinary formation. She completed doctoral-level training in clinical psychology, emphasizing trauma and temporal experience, advancing phenomenological and psychoanalytic insights within psychology. Her academic journey included a psychology-focused master’s in clinical-dynamic psychology, merging philosophical concepts with psychological sciences. Her psychology studies are complemented by international visiting scholarships in the United States, where exposure to global perspectives enriched her academic psychology knowledge. Dr. Mezzalira also completed advanced university training integrating psychology, moral sciences, and phenomenological hermeneutics. These achievements positioned her as a unique professional capable of merging philosophical reasoning with empirical psychology. Throughout, psychology remains the core lens through which she investigates trauma, gender, stigma, and healthcare processes.

Experience 

Dr. Selene Mezzalira’s professional experience demonstrates leadership in psychology education, research, and applied practice. She has held academic psychology appointments as a lecturer in clinical psychology, general psychology, and psychology of violence, contributing to medical and psychology programs. Her psychology expertise extends to national and international research networks, coordinating projects on intersectional stigma, minority stress, parenting, and cognitive-emotional dynamics in psychology contexts. Her applied psychology experience includes psychotherapy training and clinical internships in gender incongruence care, translating research findings in psychology into patient-centered practices. Dr. Mezzalira also engages in editorial activities within psychology journals, shaping future scholarly conversations in psychology. This broad professional psychology engagement confirms her as a multifaceted contributor advancing the field on multiple fronts.

Research Interest 

Dr. Selene Mezzalira’s research interests focus on critical and emerging areas of psychology. Her psychology inquiries explore trauma, temporal experience, mentalization, attachment, affect regulation, and stigma-related health disparities. She is deeply invested in LGBTQIA+ health psychology, gender diversity, and the social determinants of psychological well-being. Integrating phenomenology, psychoanalysis, and empirical psychology, her work addresses complex clinical and social psychology questions. Her research in psychology also examines minority stress, healthcare inequalities, parenthood desires, and the interface of neurocognition with subjective experience. Through interdisciplinary frameworks, she applies psychology to understand human suffering, resilience, and identity development. Dr. Mezzalira continues to expand her psychology-focused research, promoting knowledge translation into interventions that improve both mental healthcare systems and social policies globally.

Award and Honor

Dr. Selene Mezzalira has been recognized for outstanding contributions to psychology through prestigious awards and honors. Her achievements in psychology scholarship include winning the National Scientific Dissemination Prize, acknowledging her ability to communicate complex psychology concepts effectively to broader audiences. Her psychology publications have received attention from leading psychology journals, highlighting methodological rigor and social impact. Recognition extends to invitations as a keynote speaker, guest editor, and organizer of psychology-centered academic events. Such honors reflect her status as a respected figure in psychology, capable of influencing both theoretical development and applied psychology practices. These awards confirm her sustained commitment to advancing psychology as a science, as a profession, and as a vital contributor to societal well-being.

Research Skill

Dr. Selene Mezzalira’s research skills combine psychology expertise with cross-disciplinary precision. She excels in systematic reviews, mixed-method research, quantitative and qualitative methodologies, and psychological measurement development. Her psychology research involves mediational and moderation analyses, clinical assessments, and interpretation of complex socio-cultural phenomena through psychology frameworks. International collaborations allow her to coordinate multi-site psychology studies on stigma, mental health, and gender identity. Her editorial and peer-review roles reinforce advanced critical evaluation in psychology scholarship. Proficiency in integrating psychology with philosophy, psychoanalysis, and neuroscience enhances theoretical depth and practical applicability. These research skills support evidence-based recommendations, clinical guidelines, and culturally competent psychology practices, solidifying Dr. Mezzalira’s role as a highly skilled psychology researcher with global academic influence.

Publication Top Notes 

Title: Sexual and reproductive health practitioners' attitudes and knowledge regarding transgender, gender diverse, and non-binary patients: A mixed-method systematic review
Citation: 1
Year: 2025

Title: Perceived Stigma and Quality of Life in Binary and Nonbinary/Queer Transgender Individuals in Italy: The Mediating Roles of Patient–Provider Relationship Quality and Barriers to Care
Citation: 1
Year: 2025

Title: The moderating role of ambivalent sexism in the relationship between multidimensional heterosexism and attitudes towards same-sex parenting: an exploratory analysis with clinical implications
Citation: 0
Year: 2025

Conclusion

In conclusion, Dr. Selene Mezzalira stands as a distinguished contributor to psychology, integrating clinical insight, theoretical innovation, and interdisciplinary dialogue. Her psychology expertise informs education, research, and practice, ensuring evidence-based, culturally sensitive, and ethically sound approaches within psychology. Through leadership roles, publications, and academic mentoring, she advances psychology as both a human science and a professional discipline. Dr. Mezzalira exemplifies how psychology can intersect with philosophy, neuroscience, and social justice initiatives, producing meaningful academic and practical impact. Her ongoing commitment to psychology highlights the essential role of scholars in shaping healthcare, supporting diversity, and addressing trauma, stigma, and well-being in complex contemporary societies through psychology-driven solutions.

Dr. Nitesh Mondal | Engineering | Best Researcher Award

Dr. Nitesh Mondal | Engineering | Best Researcher Award

Assistant Professor at Ghani Khan Choudhury Institute of Engineering and Technology | India

Dr. Nitesh Mondal has built a distinguished profile in engineering through extensive research, teaching, and academic contributions. His work focuses on mechanical engineering with specialization in fluid mechanics, electrohydraulic systems, and pump design. Through engineering research, he integrates theoretical modeling, simulation, and real-time experiments to solve complex engineering challenges. He has contributed widely to engineering through teaching roles at several prestigious institutes and has authored impactful publications. His engineering expertise combines academic depth with practical problem-solving. His engineering background, coupled with active participation in international collaborations and conferences, has strengthened both his technical skills and his ability to guide innovative projects in engineering for future technological advancements.

Professional Profiles

Google Scholar Profile | ORCID Profile

Education 

Dr. Nitesh Mondal pursued advanced education in engineering, developing strong technical foundations in mechanical engineering and fluid mechanics. His academic training enabled him to excel in engineering research, focusing on mathematical modeling, dynamic systems, and experimental validation within complex engineering setups. With a Doctor of Philosophy in mechanical engineering, he established his ability to lead engineering projects, develop innovative designs, and optimize systems. His engineering education encompassed deep exploration of pump mechanisms, servo systems, and dynamic control processes, shaping his approach to high-level engineering challenges. This engineering-focused learning path provided him with the critical skills necessary for advancing scientific solutions and contributing significantly to academia, industry, and future engineering development.

Experience 

Dr. Nitesh Mondal has gained substantial professional experience across multiple engineering institutions. His career spans assistant professorships, research fellowships, and technical team memberships, all centered on mechanical engineering and related technologies. His work included teaching core engineering subjects, supervising projects, and conducting specialized research in pump design, fluid mechanics, and servo systems. He engaged in government-funded engineering projects, contributing design audits, simulations, and experimental studies. These experiences enabled him to bridge academic theory with practical engineering applications. Through engineering leadership in academic and industrial collaborations, he cultivated a comprehensive skill set valuable for solving modern engineering challenges while nurturing future engineers through innovative, research-oriented educational practices.

Research Interest 

Dr. Nitesh Mondal’s research interests encompass fluid mechanics, electrohydraulic systems, pump design, multiscale computational analysis, and materials behavior under dynamic conditions — all deeply rooted in engineering principles. His engineering projects have explored axial piston pump optimization, servo valve control, scaffold architecture, and mechanical responses of biomedical structures under fluid perfusion. By combining engineering simulations with experimental validation, he addresses challenges in both industrial and biomedical applications. His engineering research integrates computational fluid dynamics, material science, and system design, aiming to improve efficiency, stability, and performance. Through engineering-focused interdisciplinary collaboration, his interests continue to expand the boundaries of applied mechanical engineering, contributing to innovation in emerging technologies worldwide.

Award and Honor

Dr. Nitesh Mondal has received recognition in engineering through various awards, professional appointments, and academic memberships. His engineering contributions include invited research presentations, conference leadership, and participation in international symposiums. He has been entrusted with curriculum development, serving as a technical expert on engineering syllabus committees and advisory boards. His engineering achievements are acknowledged through editorial roles in reputed journals and professional memberships in prestigious engineering societies. His honors underline the value of his engineering research, which combines theoretical insight with practical innovation. These recognitions serve as a testament to his impactful contributions in the engineering field, advancing knowledge, practice, and education while inspiring emerging engineers and researchers.

Research Skill

Dr. Nitesh Mondal possesses a robust set of research skills, deeply aligned with engineering innovation. His expertise includes computational modeling, system dynamics, mechanical design, materials testing, and multi-domain simulations — all crucial to modern engineering challenges. Skilled in MATLAB, ANSYS, LabVIEW, and advanced CAD tools, he effectively translates engineering concepts into validated prototypes. He demonstrates strength in experimental setup design, data analysis, and optimization of engineering systems for improved performance. His engineering research approach integrates theory, simulation, and experimentation, producing results relevant to academia and industry alike. These engineering skills allow him to develop high-impact solutions that address complex technical problems and contribute to sustainable engineering advancements globally.

Publication Top Notes 

Title: A novel method to design pressure compensator for variable displacement axial piston pump
Journal: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of …
Authors: N Mondal, R Saha, S Mookherjee, D Sanyal
Citation: 21

Title: A study on electro hydraulic servovalve controlled by a two spool valve
Journal: International Journal of Emerging Technology and Advanced Engineering
Authors: N Mondal, BN Datta
Citation: 12

Title: Designing of different types of gyroid scaffold architecture to achieve patient-specific osseointegration friendly mechanical environment
Journal: International Journal for Multiscale Computational Engineering
Authors: A Gupta, M Rana, N Mondal, A Das, A Karmakar, AR Chowdhury
Citation: 10

Title: Modelling and prediction of micro-hardness of electroless Ni-P coatings using response surface methodology and fuzzy logic
Journal: Jordan Journal of Mechanical and Industrial Engineering
Authors: S Sarkara, R Mandala, N Mondalb, S Chaudhuric, T Mandald, ...
Citation: 9

Title: A single stage spool valve for the pressure compensator of a variable displacement pump: design, dynamic simulation and comparative study with a real pump
Journal: Sādhanā
Authors: N Mondal, R Saha, D Sanyal
Citation: 7

Title: An experimental exploration on pressure-compensated swash plate-type variable displacement axial piston pump
Journal: Journal of The Institution of Engineers (India): Series C
Authors: N Mondal, R Saha, D Sanyal
Citation: 7

Title: A finite element study and mathematical modeling of lumbar pedicle screw along with various design parameters
Journal: Journal of Orthopaedic Science
Authors: JK Biswas, N Mondal, S Choudhury, A Malas, M Rana
Citation: 6

Title: Assessment of mechanical responses between trabecular bones and porous scaffolds under static loading and fluid flow conditions: a multiscale approach
Journal: International Journal for Multiscale Computational Engineering
Authors: P Samanta, S Kundu, A Gupta, M Rana, N Mondal, AR Chowdhury
Citation: 5

Title: Determination of Optimum Design Parameters for Gyroid Scaffolds to Mimic a Real Bone-Like Condition In Vitro: A Fluid Structure Interaction Study
Journal: Journal of Engineering and Science in Medical Diagnostics and Therapy
Authors: A Gupta, M Rana, N Mondal
Citation: 5

Title: Performance Evaluation and Frequency Response Analysis of a Two Stage Two Spool Electrohydraulic Servovalve with a Linearized Model
Journal: Engineering Transactions
Authors: N Mondal, B Datta
Citation: 5

Title: Parametric optimization and minimization of corrosion rate of electroless Ni–P coating using Box-Behnken design and Artificial Neural Network
Journal: Results in Surfaces and Interfaces
Authors: A Mallick, R Mandal, N Mondal, S Sarkar, N Biswas, B Maji, G Majumdar
Citation: 4

Title: A novel approach to design compensator actuators for a swash plate axial piston pump along with the experimental validation
Journal: International Journal of Dynamics and Control
Authors: N Mondal
Citation: 4

Title: Design and design investigations of a flow control spool valve
Journal: International Journal on Interactive Design and Manufacturing (IJIDeM)
Authors: A Ghosh, A Gupta, N Mondal
Citation: 4

Title: A finite element based comparative study of lumbosacral pedicle screw fixation and artificial disc replacement
Journal: Journal of Engineering and Science in Medical Diagnostics and Therapy
Authors: JK Biswas, A Banerjee, N Mondal, M Rana
Citation: 3

Title: Effect of Dynamic Swiveling Torque and Eccentricity on the Design of Compensator Cylinders for a Variable Displacement Axial Piston Pump–Modelling & Simulation
Journal: Jordan Journal of Mechanical and Industrial Engineering
Authors: Ishita De, Subhasish Sarkar, Shouvik Chaudhuri, Nitesh Mondal*, Niraj Kumar
Citation: 3

Title: Pressure compensator design, simulation and performance evaluation of a variable displacement swash plate type axial piston pump
Journal: Sigma Journal of Engineering and Natural Sciences
Authors: N Mondal, R Saha, D Sanyal
Citation: 2

Title: Effect of damping length on dynamic performance of two-stage two-spool electrohydraulic servovalve
Journal: Fluid Mechanics and Fluid Power–Contemporary Research: Proceedings of the …
Authors: N Mondal, B Datta
Citation: 2

Title: Evaluating the mechanical responses on a cell under fluid perfusion: A multiscale computational method
Journal: Results in Surfaces and Interfaces
Authors: P Samanta, S Kundu, A Gupta, M Rana, N Mondal, AR Chowdhury
Citation: 1

Title: FEA Based Design and Stability Study of Electroless Ni-P Coating Plated over a Stepped Shaft under Thermal Load
Journal: Australian Journal of Mechanical Engineering
Authors: T Hassan, S Sarkar, T Mandal, N Mondal, G Majumdar
Citation: 1

Title: Finite Element Analysis of Maxillary Anterior Dentition During Retraction With Varying Level of Bone Support
Journal: Journal of Engineering and Science in Medical Diagnostics and Therapy
Authors: JK Biswas, R Pradhan, N Mondal, S Ballav, M Rana
Citation: 1

Conclusion

Dr. Nitesh Mondal exemplifies engineering excellence through education, research, and professional service. His career unites theoretical depth, practical innovation, and teaching leadership within engineering. By advancing mechanical engineering systems, optimizing fluid dynamics, and contributing to computational modeling, he provides lasting value to both academic and industrial domains. His engineering journey reflects a commitment to problem-solving, interdisciplinary collaboration, and continuous improvement in technology. Through his engineering expertise, publications, and mentorship, he contributes to shaping future engineers and strengthening global knowledge networks. In conclusion, Dr. Nitesh Mondal remains a dedicated contributor to advancing modern engineering solutions, fostering innovation, and elevating the standards of scientific and educational practice in engineering.

Kamila Dus-Szachniewicz | Experimental Methods | Women Researcher Award

Kamila Dus-Szachniewicz | Experimental Methods | Women Researcher Award

Ass. Prof. at Wrocław Medical University | Poland

Assoc. Prof. Dr. Kamila Dus-Szachniewicz has an extensive background in clinical and experimental pathology, with a strong focus on Experimental Methods in cancer research. Her career reflects a deep integration of Experimental Methods in proteomics, tumor microenvironment modeling, and innovative diagnostic approaches. She works at Wrocław Medical University, advancing Experimental Methods that combine optical tweezers technology and mass spectrometry for precision oncology. Her leadership in pioneering Experimental Methods has resulted in several patents and influential publications. This summary highlights her capacity to merge fundamental science with practical applications, pushing the boundaries of Experimental Methods in medical diagnostics, cancer cell interaction analysis, and therapeutic development within translational oncology.

Professional Profiles

Google Scholar Profile | ORCID Profile

Education 

Assoc. Prof. Dr. Kamila Dus-Szachniewicz has pursued academic excellence through a comprehensive education grounded in Experimental Methods and biological sciences. She earned her master’s in biology, specializing in genetics and microbiology, further shaping her foundational understanding of cellular systems. Her Ph.D. in Medical Sciences integrated Experimental Methods to analyze colorectal adenoma and carcinoma through proteomics. Later, she completed her Doctor of Medical Sciences (habilitation), employing Experimental Methods such as optical tweezers to assess lymphomas under diverse microenvironmental conditions. This educational journey reflects a consistent emphasis on Experimental Methods, providing the skills and theoretical grounding essential for innovation in modern cancer research and diagnostic tool development.

Experience 

Assoc. Prof. Dr. Kamila Dus-Szachniewicz’s professional experience is distinguished by her consistent application of Experimental Methods across multiple high-impact research areas. At Wrocław Medical University, she developed proteomic techniques for FFPE tissue analysis, enhancing cancer biomarker discovery through advanced Experimental Methods. She established and characterized three-dimensional lymphoma spheroid models, integrating Experimental Methods to simulate tumor microenvironments and improve translational relevance. Moreover, she applied optical tweezers-based Experimental Methods to study cell adhesion, develop hybrid spheroids, and support personalized oncology. Her role as a research project leader demonstrates her ability to design, implement, and manage sophisticated Experimental Methods to address pressing challenges in hematological malignancy diagnostics and therapeutic strategy development.

Research Interest 

Assoc. Prof. Dr. Kamila Dus-Szachniewicz’s research interests are deeply rooted in the innovative use of Experimental Methods to solve complex problems in oncology. She focuses on proteomic profiling of cancer progression, enabling precision diagnostics through optimized Experimental Methods. Her work includes constructing advanced tumor models to mimic lymphoma-microenvironment crosstalk, improving Experimental Methods for studying drug response and cell-cell interaction. Additionally, she explores the use of optical tweezers-based Experimental Methods to analyze mechanical and adhesive properties of cancer cells, linking physical forces with therapeutic outcomes. These research interests collectively illustrate her commitment to advancing Experimental Methods for more predictive, precise, and clinically relevant cancer research approaches.

Award and Honor

Assoc. Prof. Dr. Kamila Dus-Szachniewicz has been recognized for her outstanding contributions to science through several prestigious awards and honors emphasizing Experimental Methods in oncology. Her pioneering use of optical tweezers as part of Experimental Methods in hematological cancer research garnered institutional and national funding. The successful completion of competitive projects has elevated Experimental Methods as transformative tools in diagnostic innovation. Her contributions have also been acknowledged through grants promoting translational applications of Experimental Methods in cancer biology. These honors underscore her leadership and vision, reaffirming the importance of Experimental Methods in redefining how cellular interactions and therapeutic targets are identified and validated in modern medicine.

Research Skill

Assoc. Prof. Dr. Kamila Dus-Szachniewicz has developed a powerful set of research skills, all interconnected by her mastery of Experimental Methods. She has refined skills in proteomic analysis using mass spectrometry, a cornerstone of modern Experimental Methods for biomarker discovery. Her ability to design and manage complex cell culture systems, including hybrid lymphoma spheroids, highlights her proficiency in Experimental Methods modeling disease biology. Furthermore, her technical expertise in optical tweezers-based assays exemplifies how Experimental Methods can quantify mechanical properties of cancer cells. Collectively, her research skills demonstrate a profound capacity to implement and advance Experimental Methods that bridge molecular insights, cellular behavior, and therapeutic innovation in oncology.

Publication Top Notes 

Title: Extensive quantitative remodeling of the proteome between normal colon tissue and adenocarcinoma
Journal: Molecular Systems Biology
Authors: JR Wiśniewski, P Ostasiewicz, K Duś, DF Zielińska, F Gnad, M Mann
Citation: 274

Title: Proteomic workflow for analysis of archival formalin‐fixed and paraffin‐embedded clinical samples to a depth of 10 000 proteins
Journal: PROTEOMICS–Clinical Applications
Authors: JR Wiśniewski, K Duś, M Mann
Citation: 174

Title: Absolute proteome analysis of colorectal mucosa, adenoma, and cancer reveals drastic changes in fatty acid metabolism and plasma membrane transporters
Journal: Journal of Proteome Research
Authors: JR Wiśniewski, K Duś-Szachniewicz, P Ostasiewicz, P Ziółkowski, ...
Citation: 89

Title: Toward controlled photothermal treatment of single cell: optically induced heating and remote temperature monitoring in vitro through double wavelength optical tweezers
Journal: ACS Photonics
Authors: S Drobczyński, K Prorok, K Tamarov, K Duś-Szachniewicz, VP Lehto, ...
Citation: 43

Title: Physiological hypoxia (physioxia) impairs the early adhesion of single lymphoma cell to marrow stromal cell and extracellular matrix. Optical tweezers study
Journal: International Journal of Molecular Sciences
Authors: K Duś-Szachniewicz, S Drobczyński, P Ziółkowski, P Kołodziej, ...
Citation: 28

Title: Pattern of melanotransferrin expression in human colorectal tissues: an immunohistochemical study on potential clinical application
Journal: Anticancer Research
Authors: K Duś-Szachniewicz, P Ostasiewicz, M Woźniak, P Kołodziej, ...
Citation: 24

Title: Real-time force measurement in double wavelength optical tweezers
Journal: Journal of the Optical Society of America B
Authors: S Drobczyński, K Duś-szachniewicz
Citation: 19

Title: Quantitative analysis of gene expression in fixed colorectal carcinoma samples as a method for biomarker validation
Journal: Molecular Medicine Reports
Authors: B Ostasiewicz, P Ostasiewicz, K Duś-Szachniewicz, K Ostasiewicz, ...
Citation: 18

Title: Protein tyrosine phosphatase receptor R and Z1 expression as independent prognostic indicators in oral squamous cell carcinoma
Journal: Head & Neck
Authors: K Duś‐Szachniewicz, M Woźniak, K Nelke, E Gamian, H Gerber, ...
Citation: 18

Title: Insulin-like growth factor-2 is induced following 5-aminolevulinic acid-mediated photodynamic therapy in SW620 human colon cancer cell line
Journal: International Journal of Molecular Sciences
Authors: M Woźniak, K Duś-Szachniewicz, P Ziółkowski
Citation: 18

Title: Development and characterization of 3D hybrid spheroids for the investigation of the crosstalk between B-cell non-Hodgkin lymphomas and mesenchymal stromal cells
Journal: OncoTargets and Therapy
Authors: K Duś-Szachniewicz, K Gdesz-Birula, G Rymkiewicz
Citation: 16

Title: Proteomic-based analysis of hypoxia-and physioxia-responsive proteins and pathways in diffuse large B-cell lymphoma
Journal: Cells
Authors: K Duś-Szachniewicz, K Gdesz-Birula, K Zduniak, JR Wiśniewski
Citation: 15

Title: The assessment of the combined treatment of 5-ALA mediated photodynamic therapy and thalidomide on 4T1 breast carcinoma and 2H11 endothelial cell line
Journal: Molecules
Authors: K Zduniak, K Gdesz-Birula, M Woźniak, K Duś-Szachniewicz, ...
Citation: 14

Title: Immunohistochemical study of nuclear ubiquitous casein and cyclin-dependent kinase substrate 1 in invasive breast carcinoma of no special type
Journal: Experimental and Therapeutic Medicine
Authors: K Symonowicz, K Duś-Szachniewicz, M Woźniak, M Murawski, ...
Citation: 14

Title: Differentiation of single lymphoma primary cells and normal B-cells based on their adhesion to mesenchymal stromal cells in optical tweezers
Journal: Scientific Reports
Authors: K Duś-Szachniewicz, S Drobczyński, M Woźniak, K Zduniak, ...
Citation: 13

Title: Vacata‐and divacataporphyrin: New photosensitizers for application in photodynamic therapy—an in vitro study
Journal: Lasers in Surgery and Medicine
Authors: M Klyta, P Ostasiewicz, K Jurczyszyn, K Duś, L Latos‐Grażyński, ...
Citation: 13

Title: Spectral analysis by a video camera in a holographic optical tweezers setup
Journal: Optica Applicata
Authors: S Drobczynski, K Dus-Szachniewicz, K Symonowicz, D Glogocka
Citation: 10

Title: Formation of lymphoma hybrid spheroids and drug testing in real time with the use of fluorescence optical tweezers
Journal: Cells
Authors: K Duś-Szachniewicz, K Gdesz-Birula, E Nowosielska, P Ziółkowski, ...
Citation: 9

Title: Immunocytochemical studies on the nuclear ubiquitous casein and cyclin-dependent kinases substrate following 5-aminolevulinicacid-mediated photodynamic therapy on MCF-7 cells
Journal: Photodiagnosis and Photodynamic Therapy
Authors: K Hotowy, M Woźniak, K Duś, E Czapińska, B Osiecka, ...
Citation: 8

Title: Large-scale proteomic analysis of follicular lymphoma reveals extensive remodeling of cell adhesion pathway and identifies hub proteins related to the lymphomagenesis
Journal: Cancers
Authors: K Duś-Szachniewicz, G Rymkiewicz, AK Agrawal, P Kołodziej, ...
Citation: 7

Conclusion

Assoc. Prof. Dr. Kamila Dus-Szachniewicz represents a leading figure in modern translational oncology, driven by her expertise in Experimental Methods. Her educational background, professional achievements, research leadership, and impactful publications converge to form a profile that illustrates the transformative power of Experimental Methods in advancing medical science. Through proteomics, tumor modeling, and optical manipulation technologies, she has demonstrated how Experimental Methods can bridge the gap between fundamental biology and clinical applications. This conclusion underscores her vital role in shaping future diagnostic and therapeutic strategies, inspiring continued development of Experimental Methods that will refine and personalize cancer care for improved patient outcomes.

Prof. Arti M. K. | Engineering | Best Researcher Award

Prof. Arti M. K. | Engineering | Best Researcher Award

Professor at Netaji Subhas University of Technology | India

Prof. Arti M. K. has a distinguished career in engineering with a focus on wireless communication, hybrid satellite-terrestrial systems, and MIMO relaying. Her engineering expertise has led to numerous publications in reputed journals and several patents in advanced communication technologies. She has contributed to sponsored engineering projects, gaining recognition from global institutions and premier engineering societies. Her engineering background combines research, innovation, and teaching excellence. Prof. Arti’s engineering work is widely acknowledged internationally, and she stands out as a top 2% scientist in networking and telecommunications, highlighting her engineering leadership in academia and research communities.

Professional Profiles

Google Scholar Profile | ORCID Profile 

Education 

Prof. Arti M. K. pursued engineering studies starting with a bachelor’s in electronics, followed by a master’s in communications engineering, and culminated with a Ph.D. in wireless communication. Her engineering education was accomplished at prestigious universities, equipping her with a strong foundation in research and applied problem-solving. Each stage of her engineering education involved specialized coursework and significant projects that deepened her expertise in modern communication systems. Her academic journey reflects a continuous dedication to engineering innovation, ensuring her capability to lead and mentor in advanced areas of wireless and satellite engineering technologies.

Experience 

Prof. Arti M. K. has held several academic positions, progressing through roles from lecturer to professor in leading engineering institutions. Her engineering career includes teaching, research supervision, and curriculum development in electronics and communication. She has guided students and collaborated with peers to create impactful engineering solutions. Her professional engineering experience spans multiple universities, where she advanced academic excellence, initiated projects, and developed communication technology frameworks. Through leadership and active participation in engineering research, she contributed to institutional growth while strengthening industry-academic collaboration in engineering and telecommunications fields.

Research Interest 

Prof. Arti M. K.’s engineering research interests include MIMO relaying, hybrid satellite-terrestrial cooperative communication, NOMA-based systems, and advanced wireless detection techniques. Her engineering research also focuses on developing efficient algorithms for data detection, channel estimation, and interference management. She explores both theoretical and applied aspects of communication engineering, integrating emerging technologies like machine learning in wireless networks. These engineering research pursuits aim at improving system reliability, performance, and scalability. Her engineering contributions are aligned with modern technological challenges, offering practical solutions in evolving networks and next-generation communication infrastructure.

Award and Honor

Prof. Arti M. K. has received multiple engineering awards and recognitions from esteemed institutions. Her engineering excellence is acknowledged through fellowships, senior memberships, and reviewer distinctions by global societies such as IEEE and IETE. She has been honored with premier awards at her institution for outstanding contributions to research and education in engineering. Additionally, her inclusion in the list of top 2% scientists by Stanford University highlights her engineering impact worldwide. These honors collectively showcase her engineering leadership, professional integrity, and sustained commitment to advancing the frontiers of communication technologies.

Research Skill

Prof. Arti M. K. possesses advanced engineering research skills in mathematical modeling, algorithm design, and system performance evaluation. Her engineering skills extend to analyzing fading channels, designing cooperative relaying schemes, and developing new coding techniques for MIMO systems. She excels at applying analytical tools and simulation platforms to address complex engineering challenges in wireless networks. Additionally, her engineering skillset includes patent development, project management, and cross-disciplinary collaboration, reflecting a comprehensive approach to innovation. These engineering competencies are key to her success in pioneering practical solutions in global telecommunications and modern communication engineering systems.

Publication Top Notes 

Title: Performance analysis of AF based hybrid satellite-terrestrial cooperative network over generalized fading channels
Journal: IEEE Communications Letters
Authors: MR Bhatnagar, MK Arti
Citations: 244

Title: On the closed-form performance analysis of maximal ratio combining in Shadowed-Rician fading LMS channels
Journal: IEEE Communications Letters
Authors: MR Bhatnagar, MK Arti
Citations: 158

Title: Beamforming and combining in hybrid satellite-terrestrial cooperative systems
Journal: IEEE Communications Letters
Authors: MK Arti, MR Bhatnagar
Citations: 142

Title: Performance analysis of hybrid satellite-terrestrial FSO cooperative system
Journal: IEEE Photonics Technology Letters
Authors: MR Bhatnagar, MK Arti
Citations: 141

Title: Channel Estimation and Detection in Hybrid Satellite-Terrestrial Communication Systems
Journal: IEEE Transactions on Vehicular Technology
Authors: MK Arti
Citations: 91

Title: Modeling and Predictions for COVID 19 Spread in India
Journal: ResearchGate
Authors: MK Arti, K Bhatnagar
Citations: 78

Title: Channel Estimation and Detection in Satellite Communication Systems
Journal: IEEE Transactions on Vehicular Technology
Authors: A M.K.
Citations: 77

Title: Selection beamforming and combining in decode-and-forward MIMO relay networks
Journal: IEEE Communications Letters
Authors: MR Bhatnagar, MK Arti
Citations: 72

Title: Beamforming and combining in two-way AF MIMO relay networks
Journal: IEEE Communications Letters
Authors: MK Arti, RK Mallik, R Schober
Citations: 60

Title: Relay selection‐based hybrid satellite‐terrestrial communication systems
Journal: IET Communications
Authors: MK Arti, V Jain
Citations: 59

Title: OSTBC Transmission in Shadowed-Rician Land Mobile Satellite Links
Journal: IEEE Transactions on Vehicular Technology
Authors: A MK, S Jindal
Citations: 57

Title: Two-Way Satellite Relaying with Estimated Channel Gains
Journal: IEEE Transactions on Communications
Authors: MK Arti
Citations: 56

Title: Two-way mobile satellite relaying: A beamforming and combining based approach
Journal: IEEE Communications Letters
Authors: MK Arti, MR Bhatnagar
Citations: 56

Title: Performance analysis of hop-by-hop beamforming and combining in DF MIMO relay system over Nakagami-m fading channels
Journal: IEEE Communications Letters
Authors: MK Arti, MR Bhatnagar
Citations: 46

Title: OSTBC Transmission in Large MIMO Systems
Journal: IEEE Communications Letters
Authors: MK Arti
Citations: 39

Title: Performance analysis of two-way AF MIMO relaying of OSTBCs with imperfect channel gains
Journal: IEEE Transactions on Vehicular Technology
Authors: MK Arti, MR Bhatnagar
Citations: 36

Title: Maximal ratio transmission in AF MIMO relay systems over Nakagami-m fading channels
Journal: IEEE Transactions on Vehicular Technology
Authors: MK Arti, MR Bhatnagar
Citations: 35

Title: A Novel Beamforming and Combining Scheme for Two-Way AF Satellite Systems
Journal: IEEE Transactions on Vehicular Technology
Authors: MK Arti
Citations: 29

Title: A Simple Scheme of Channel Estimation in Large MIMO Systems
Journal: Vehicular Technology Conference (VTC Spring), IEEE
Authors: A M.K.
Citations: 29

Title: Imperfect CSI based AF relaying in hybrid satellite-terrestrial cooperative communication systems
Journal: IEEE International Conference on Communication Workshop (ICCW)
Authors: MK Arti
Citations: 29

Conclusion

Prof. Arti M. K.’s distinguished profile demonstrates a career dedicated to excellence in engineering research, education, and innovation. Her engineering leadership has shaped advancements in wireless and satellite communication, inspiring students and colleagues alike. With recognized awards, international publications, and impactful patents, she exemplifies the integration of theory and practice in engineering. Her engineering journey continues to contribute to evolving technologies and academic growth worldwide. Prof. Arti M. K. remains a valuable figure in advancing engineering education and pushing the boundaries of modern communication systems, ensuring a lasting legacy in academia and industry.

Assist. Prof. Dr. Nancy Soliman | Engineering | Best Researcher Award

Assist. Prof. Dr. Nancy Soliman | Engineering | Best Researcher Award

Assistant Professor at Texas A&M University - Corpus Christi | United States

Assist. Prof. Dr. Nancy Soliman is a highly accomplished figure in Civil Engineering, bringing deep expertise to structural materials and infrastructure innovation. Her Engineering work integrates sustainability, advanced concrete technology, and multiscale analysis. She has contributed to cutting-edge Engineering projects that enhance durability, performance, and energy efficiency in construction materials. Nancy Soliman leads pioneering Engineering research, including smart concrete, CO₂-capturing composites, and multifunctional materials. Her Engineering efforts bridge academia, industry, and international collaborations, strengthening future civil infrastructure. This summary reflects her impact as a leader in Engineering research, innovation, and education, positioning her as a significant contributor to modern, sustainable infrastructure solutions on a global scale.

Professional Profiles

Google Scholar Profile | ORCID Profile 

Education 

Assist. Prof. Dr. Nancy Soliman has a strong academic background in Civil Engineering. She earned advanced Engineering degrees from highly respected institutions, demonstrating excellence in structural materials and geotechnical Engineering. Her doctoral studies in Structural Materials Engineering focused on developing ultra-high-performance concrete using recycled materials for sustainable applications. Postdoctoral research at world-renowned institutions advanced Engineering knowledge in smart, electron-conductive cement composites. Throughout her academic journey, she explored Engineering solutions for structural durability, sustainability, and multifunctionality. These Engineering-focused experiences equipped her with the expertise to innovate in high-performance materials and lead future Engineering research efforts that meet global infrastructure challenges while advancing environmental and technological goals.

Experience 

Assist. Prof. Dr. Nancy Soliman has extensive Engineering professional experience across academia, industry, and collaborative research networks. She serves as an Assistant Professor of Civil Engineering, leading laboratory development, curriculum innovation, and major Engineering projects funded by competitive grants. Her Engineering practice includes creating sustainable ultra-high-performance concrete, electron-conductive composites, and CO₂-capturing structural materials. Previously, she contributed Engineering expertise to prestigious institutions like MIT and Ryerson University, advancing smart materials and eco-friendly solutions. Her Engineering leadership has fostered partnerships between academic, governmental, and industrial sectors. This Engineering-driven career path highlights her dedication to translating fundamental research into practical, high-impact solutions for resilient, sustainable infrastructure worldwide.

Research Interest 

Assist. Prof. Dr. Nancy Soliman’s research interests focus on advancing Engineering knowledge in civil infrastructure materials. She investigates sustainable Engineering solutions for concrete, multifunctional composites, and carbon utilization in construction. Her Engineering work spans multiscale chemo-mechanical characterization, durability enhancement, and smart material design. She studies electron-conductive concrete for self-sensing and self-heating, pioneering Engineering approaches to energy-efficient structures. Additionally, she explores recycling industrial byproducts, advancing green Engineering technologies. By combining experimental, analytical, and modeling techniques, she addresses pressing Engineering challenges, offering innovative strategies for future-ready infrastructure systems. These Engineering-driven interests align with global priorities for sustainable, resilient, and technologically advanced construction practices.

Award and Honor

Assist. Prof. Dr. Nancy Soliman has earned numerous distinctions in Engineering, recognizing her exceptional contributions to research, innovation, and education. Her Engineering achievements include best thesis, best invention, and best presentation awards in prestigious international conferences. Leading organizations have honored her Engineering excellence through fellowships, teaching awards, and competitive research grants. She has been nominated and recognized for instructional innovation, demonstrating her impact in Engineering education. Her achievements reflect global recognition of her Engineering leadership in sustainable materials and advanced infrastructure technologies. These awards highlight a career marked by creativity, dedication, and significant advancements in modern Engineering science and practice.

Research Skill

Assist. Prof. Dr. Nancy Soliman possesses diverse Engineering research skills essential for innovation in infrastructure materials. Her Engineering expertise spans experimental design, multiscale testing, material modeling, and process optimization. She applies advanced Engineering techniques to develop eco-friendly ultra-high-performance concrete, electron-conductive composites, and CO₂-capturing materials. Her skills integrate chemical, mechanical, and computational Engineering approaches, bridging theory and application. She leads Engineering projects from laboratory scale to real-world implementation, ensuring scientific rigor and practical relevance. By combining analytical insight with creative Engineering problem-solving, she drives breakthroughs in material performance, sustainability, and functionality. These skills make her a critical contributor to advancing global Engineering solutions.

Publication Top Notes 

Title: Development of ultra-high-performance concrete using glass powder–Towards ecofriendly concrete
Journal: Construction and Building Materials
Authors: NA Soliman, A Tagnit-Hamou
Citation: 374

Title: Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap
Journal: Construction and Building Materials
Authors: NA Soliman, A Tagnit-Hamou
Citation: 277

Title: Using glass sand as an alternative for quartz sand in UHPC
Journal: Construction and Building Materials
Authors: NA Soliman, A Tagnit-Hamou
Citation: 238

Title: Using Particle Packing and Statistical Approach to Optimize Eco-Efficient Ultra-High-Performance Concrete.
Journal: ACI Materials Journal
Authors: NA Soliman, A Tagnit-Hamou
Citation: 124

Title: Nano-engineered ultra-high performance concrete for controlled autogenous shrinkage using nanocellulose
Journal: Cement and Concrete Research
Authors: OA Hisseine, NA Soliman, B Tolnai, A Tagnit-Hamou
Citation: 114

Title: Green ultra-high-performance glass concrete
Journal: International Interactive Symposium on Ultra-High Performance Concrete
Authors: A Tagnit-Hamou, N Soliman, A Omran
Citation: 101

Title: Reproductive hormonal changes and catamenial pattern in adolescent females with epilepsy
Journal: Epilepsia
Authors: HA El-Khayat, NA Soliman, HY Tomoum, MA Omran, AS El-Wakad, ...
Citation: 67

Title: Performance of ground-glass pozzolan as a cementitious material—A review
Journal: Advances in Civil Engineering Materials
Authors: A Omran, N Soliman, A Zidol, A Tagnit-Hamou
Citation: 56

Title: Laboratory Characterization and Field Application of Novel Ultra-High-Performance Glass Concrete.
Journal: ACI Materials Journal
Authors: NA Soliman, AF Omran, A Tagnit-Hamou
Citation: 55

Title: Field trials with concrete incorporating biomass-fly ash
Journal: Construction and Building Materials
Authors: A Omran, N Soliman, A Xie, T Davidenko, A Tagnit-Hamou
Citation: 48

Title: Micro-chemo-mechanical features of ultra-high performance glass concrete (UHPGC)
Journal: Theoretical and Applied Fracture Mechanics
Authors: W Wilson, NA Soliman, L Sorelli, A Tagnit-Hamou
Citation: 42

Title: Electric energy dissipation and electric tortuosity in electron conductive cement-based materials
Journal: Physical Review Materials
Authors: NA Soliman, N Chanut, V Deman, Z Lallas, FJ Ulm
Citation: 23

Title: Ground glass Pozzolan in conventional, high, and ultra-high performance concrete
Journal: MATEC Web of Conferences
Authors: A Tagnit-Hamou, A Zidol, N Soliman, J Deschamps, A Omran
Citation: 23

Title: Piezoelectric ring actuator technique to monitor early-age properties of cement-based materials
Journal: Cement and Concrete Composites
Authors: NA Soliman, KH Khayat, M Karray, AF Omran
Citation: 21

Title: Effects of cellulose nanofibrils on rheological and mechanical properties of 3D printable cement composites
Journal: Cement and Concrete Composites
Authors: U Kilic, N Soliman, A Omran, OE Ozbulut
Citation: 17

Title: Ultra-high performance glass concrete and method for producing same
Journal: US Patent
Authors: A Tagnit-Hamou, N Soliman
Citation: 12

Title: Development of ultra-high-performance concrete (UHPC) using waste glass materials─ towards innovative eco-friendly concrete
Journal: Université de Sherbrooke
Authors: N Soliman
Citation: 9

Title: Synthesis and characterization of bentonite-based lightweight ceramic aggregates using coal combustion residue and kerosene bloating agent
Journal: Construction and Building Materials
Authors: F Hussain, A Omran, N Soliman
Citation: 8

Title: Assessing economic and environmental performance of infill materials through BIM: a life cycle approach
Journal: Smart and Sustainable Built Environment
Authors: ZW Sajid, SA Khan, F Hussain, F Ullah, RA Khushnood, N Soliman
Citation: 7

Title: The Piezo-electric Ring Actuator technique (P-RAT)–16 years of progress
Journal: Proceedings of the 72nd Canadian Geotechnical Conference
Authors: M Karray, G Lefebvre, K Khayat, MN Hussien, A Mhenni, M Ben Romdhan, ...
Citation: 7

Conclusion

Assist. Prof. Dr. Nancy Soliman’s career reflects an unwavering commitment to Engineering innovation, sustainability, and education. Her Engineering leadership advances the future of infrastructure materials, integrating green technologies with high-performance applications. Through research, teaching, and collaborative Engineering initiatives, she inspires progress toward smarter, more resilient civil systems. Her Engineering vision aligns with global needs, addressing environmental, structural, and energy challenges simultaneously. By transforming fundamental Engineering concepts into practical solutions, she builds pathways for next-generation infrastructure. This conclusion underscores her role as a prominent Engineering figure whose work bridges science, technology, and societal advancement, shaping the built environment for decades to come.