Settimo Mariangela | Astrophysics | Best Researcher Award

Dr. Settimo Mariangela | Astrophysics | Best Researcher Award

Senior researcher at Centre national de la recherche scientifique, France

Mariangela Settimo is an accomplished Italian physicist whose research spans subatomic physics, dark matter, cosmic rays, and neutrino science. With a Ph.D. from the University of Salento and an HDR from the Université de Nantes, she has advanced through prestigious positions across Italy, Germany, and France. As a CNRS researcher at SUBATECH, she leads international projects including DAMIC-M and JUNO, coordinating efforts in dark matter detection and neutrino astrophysics. 📡 She has authored over 140 publications, delivered numerous plenary talks, and played a pivotal role in large collaborations like Pierre Auger. 💡 Her leadership extends to grant acquisition, academic juries, and mentoring future physicists. 🎓 A decorated scientist, she received national awards and international fellowships, and is active in outreach to promote science among youth and girls. 🧒🌌 With sharp scientific insight and international impact, Mariangela continues to influence the frontier of experimental physics. 🌍🧪

Professional Profile 

🎓 Education 📚

Mariangela Settimo’s academic journey began with outstanding achievements in physics at the University of Lecce, where she earned both her Bachelor’s and Master’s degrees with the highest honors — 110/110 e lode. 🏅 Her passion for subatomic phenomena led her to a Ph.D. in Physics at the University of Salento and INFN, Italy, which she completed in 2010 with an “excellent” distinction. 📖 She later earned the prestigious Habilitation à Diriger des Recherches (HDR) from Université de Nantes in 2021, solidifying her credentials to lead advanced research. 🧑‍🔬 Her strong academic foundation, coupled with postdoctoral training in Germany and France, laid the groundwork for a high-impact scientific career. Her qualifications also include recognition in both France and Italy for university-level professorial roles, showcasing her international academic stature. 🧑‍🏫🎓 Her educational path blends rigor, recognition, and a dedication to scientific exploration. 🔬✨

💼 Professional Experience 🏛️

Dr. Settimo currently holds the position of Chargée de recherche CNRS (CR1) at SUBATECH in Nantes since 2016, where she actively leads national and international scientific efforts. 🧪 Her previous roles include postdoctoral fellowships at the University of Siegen (Germany) and the Institut Lagrange de Paris, where she contributed to frontier research in astroparticle physics and detector development. 🛰️ Across her professional roles, she has managed large-scale experiments such as DAMIC-M (dark matter search), JUNO (neutrino detection), and contributed significantly to Pierre Auger (cosmic rays). 🌌 Her leadership spans technical system coordination, data acquisition, electronics validation, and collaborative governance. 💡 As a scientific advisor, reviewer, and mentor, she continues to shape the future of particle physics. Her role also includes active contributions to CNRS networks like GDR DI2I and DUPhy, further underlining her influence in national research policy and collaboration. 🔗🔭

🔬 Research Interests 🌌

Mariangela’s core research interests revolve around the elusive constituents of the universe: dark matter, neutrinos, and ultra-high energy cosmic rays. 🕳️ Her expertise spans from designing sensitive CCD-based detectors for low-energy dark matter interactions (DAMIC/DAMIC-M) to coordinating supernova neutrino physics (JUNO). 🚀 She has worked extensively on multi-messenger astrophysics, rare event detection, and large photomultiplier systems. Her physics insight is balanced with robust computational knowledge, overseeing national computing resources for major experiments. 💻⚛️ Her role in hardware and software design, DAQ systems, and data analysis in high-energy physics is pivotal. Mariangela’s multidisciplinary efforts blend engineering, programming, and physics theory, enabling her to contribute meaningfully to multi-national scientific collaborations. 🧬 She is also deeply engaged in advancing the technology behind experimental detection — pushing the frontier of instrumentation for rare event physics. 🔭⚙️ Her work lies at the crossroads of innovation and fundamental discovery. 🌠

🏅 Awards and Honors 🏆

Dr. Settimo’s career is adorned with distinguished awards and prestigious grants reflecting her international excellence. 🌍 She won the Bruno Rossi National Prize in 2011 for the best Ph.D. thesis in Astroparticle and Neutrino Physics in Italy — a mark of national scientific distinction. 🎖️ Her contributions earned her international fellowships, including from the Betty and Gordon Moore Foundation (USA) and ILP (France). She has led several major PI-level projects, such as CNRS-University of Chicago collaborations and the France-China FCPPN project (2025), securing competitive funding. 💰 She is a sought-after reviewer for international journals, a jury member for Ph.D. theses, and a member of research evaluation panels for institutions like the Italian Ministry of Research. 📋 As co-director of national GDR research groups and elected to governance roles, she’s not just a brilliant physicist but also a respected leader in European scientific circles.👩‍🔬

📚 Publications Top Note 

1. Search for very-short-baseline oscillations of reactor antineutrinos with the SoLid detector

  • Authors: Not listed

  • Year: 2025

  • Source: Physical Review D

  • Summary:
    This study explores very-short-baseline neutrino oscillations using the SoLid detector placed near a nuclear reactor. The experiment is likely designed to test anomalies in reactor antineutrino flux, investigating possible sterile neutrinos.


2. Prediction of energy resolution in the JUNO experiment

  • Authors: Not listed

  • Year: 2025

  • Citations: 2

  • Source: Chinese Physics C

  • Summary:
    The paper predicts the energy resolution performance of the Jiangmen Underground Neutrino Observatory (JUNO). The analysis likely involves simulations or analytical models of light yield, photomultiplier performance, and system noise.


3. JUNO sensitivity to invisible decay modes of neutrons

  • Authors: Not listed

  • Year: 2025

  • Citations: 1

  • Source: European Physical Journal C

  • Summary:
    This article evaluates JUNO’s ability to detect or constrain hypothetical invisible decay channels of neutrons, which may hint at physics beyond the Standard Model, such as baryon number violation or dark sector interactions.


4. Ultra-High-Energy Photons: New Horizons Ahead? (Editorial, Open Access)

  • Author: Not listed

  • Year: 2025

  • Source: Not listed

  • Summary:
    An editorial likely discussing the prospects, challenges, and experimental approaches for detecting ultra-high-energy photons, which could provide insight into cosmic rays and extreme astrophysical phenomena.


5. The design and technology development of the JUNO central detector

  • Authors: Not listed

  • Year: 2024

  • Source: European Physical Journal Plus

  • Summary:
    This technical article details the design and technological innovations in constructing JUNO’s central detector, including photomultiplier arrays, scintillator formulation, mechanical supports, and calibration systems.


6. The DAMIC-M Low Background Chamber

  • Authors: Not listed

  • Year: 2024

  • Citations: 1

  • Source: Journal of Instrumentation

  • Summary:
    Focuses on the development and performance of a low-background chamber for the DAMIC-M dark matter experiment, aiming to minimize environmental radiation and improve sensitivity to low-mass dark matter particles.


7. The DAMIC-M experiment: scientific results from prototype detector and development status (Conference Paper)

  • Authors: Not listed

  • Year: Not specified

  • Citations: 0

  • Source: Not listed

  • Summary:
    Presents preliminary results and technical progress from the DAMIC-M prototype, a CCD-based experiment for detecting dark matter. Likely covers background suppression, signal detection, and calibration.


8. Model-independent Approach of the JUNO 8B Solar Neutrino Program

  • Authors: Not listed

  • Year: 2024

  • Citations: 5

  • Source: Astrophysical Journal

  • Summary:
    Proposes a model-independent methodology for analyzing JUNO’s solar neutrino data, especially from ⁸B decay. This can help reduce theoretical uncertainties and extract robust oscillation parameters.


9. The DAMIC-M experiment: status and first results (Conference Paper)

  • Authors: Not listed

  • Year: Not specified

  • Citations: 1

  • Source: Not listed

  • Summary:
    An update on the current state and initial findings from the DAMIC-M experiment, emphasizing early data from CCD detectors and the readiness of future runs.


10. Confirmation of the spectral excess in DAMIC at SNOLAB with skipper CCDs (Open Access)

  • Authors: Not listed

  • Year: 2024

  • Citations: 4

  • Source: Physical Review D

  • Summary:
    Confirms previous observations of a low-energy excess in the DAMIC experiment, using Skipper CCDs at SNOLAB. This could point to unidentified background sources or potential dark matter interactions.

Conclusion 🔚

Mariangela Settimo emerges as a powerful force in the landscape of experimental physics, known for her scientific rigor, leadership, and international collaborations. 🌐 Her interdisciplinary skills—from detector technology to particle astrophysics—are matched by her commitment to mentoring, outreach, and institutional development. 🌟 She seamlessly integrates academic excellence, technical innovation, and societal contribution through initiatives like promoting women in science and primary school engagement. 👩‍🚀📣 With 140+ papers, a host of honors, and leadership in major physics experiments, her career is a stellar example of 21st-century scientific endeavor. 🌌 As both an innovator and educator, Mariangela continues to break barriers in understanding the universe’s most profound mysteries. 🧭 Her journey inspires both the current scientific community and the next generation of researchers, affirming her as a deserving candidate for prestigious research awards and international recognition. 🏆🔬

Amit Samaddar | Cosmology | Best Researcher Award

Mr. Amit Samaddar | Cosmology | Best Researcher Award

Amit Samaddar at National Institute of Technology Manipur, India

Amit Samaddar is a passionate researcher and a 4th-year Ph.D. student at NIT Manipur, specializing in dynamical systems in cosmology, modified gravity, and observational mc.3 He has authored 14 SCI papers, with 6 more under communication. His future aspirations include postdoctoral research and gaining expertise in observational cosmology, 21 cm signals, black holes, gravitational waves, and gravastars. Proficient in Python, Mathematica, and LaTeX, he actively engages in scientific research and data analysis. Amit is a dedicated scholar with a keen interest in unraveling the mysteries of the universe. 🌌✨

Professional Profile

Orcid

Scopus

Google Scholar

Education & Experience 🎓

  • 📌 Ph.D. in Mathematics – National Institute of Technology Manipur (2022–Present)

  • 📌 M.Sc. in Mathematics – National Institute of Technology Jamshedpur (2019–2021)

  • 📌 B.Sc. (Hons.) in Mathematics – Durgapur Government College (2016–2019)

  • 🏆 Qualified GATE in Mathematics (2021)

  • 🏆 Qualified JAM in Mathematics (2019)

  • 🏆 Qualified WBJEE

Professional Development 📚

Amit Samaddar is constantly expanding his research knowledge in cosmology and gravitational physics. He is keen on learning about observational techniques, 21 cm cosmology, black hole physics, and gravitational waves. 🔭 His work focuses on theoretical models and their observational implications. He is proficient in Python and Mathematica for data analysis and simulations. 🖥️ Additionally, he is skilled in LaTeX for scientific documentation and MS Office tools for presentations. Amit actively collaborates with fellow researchers and seeks to contribute to the advancement of theoretical and observational cosmology. 🚀🌌

Research Focus 🔬

Amit’s research is centered on understanding the universe’s fundamental structure. His interests include dynamical systems in cosmology, modified gravity, theoretical and observational cosmology. 🌀 He aims to explore gravitational waves, black hole physics, 21 cm signals, and gravastars, which are crucial in studying the early universe and cosmic evolution. 🌠 His work involves developing mathematical models that help interpret astrophysical phenomena. With a strong background in mathematics and computational tools, Amit is determined to bridge the gap between theory and observation in modern cosmology. 🌍🔭

Awards & Honors 🏆

  • 🎖️ Published 14 SCI papers 📄

  • 🎖️ 6 research papers under communication ✍️

  • 🏅 Qualified GATE in Mathematics (2021)

  • 🏅 Qualified JAM in Mathematics (2019)

  • 🏅 Qualified WBJEE

Publication Top Notes

  1. “Dynamical System Approach of Interacting Dark Energy Models in f(R, Tϕ) Gravity”

    • Publication: Communications in Theoretical Physics

    • Date: April 1, 2025

    • DOI: 10.1088/1572-9494/ad91b2

    • Summary: This study examines isotropic and homogeneous cosmological models within the f(R, Tϕ) gravity framework, where R is the Ricci scalar and Tϕ represents the trace of the energy-momentum tensor. The authors perform a dynamical system analysis on the model f(R, Tϕ) = R + 2(aTϕ + b), deriving autonomous equations and assessing equilibrium points through eigenvalue analysis.

  2. “A Novel Approach to Baryogenesis in f(Q, Lm) Gravity and Its Cosmological Implications”

    • Publication: Nuclear Physics B

    • Date: March 2025

    • DOI: 10.1016/j.nuclphysb.2025.116834

    • Summary: This paper explores the f(Q, Lm) gravity model, proposing the functional form f(Q, Lm) = αQⁿ + βLm. It discusses the model’s impact on cosmological dynamics and gravitational baryogenesis, constraining parameters using observational data from Hubble, BAO, and Pantheon datasets, and determining the baryon-to-entropy ratio ηB/s.

  3. “Cosmological Dynamics and Thermodynamic Behavior in f(Q, C) Gravity: An Analytical and Observational Approach”

    • Publication: Physics of the Dark Universe

    • Date: February 2025

    • DOI: 10.1016/j.dark.2024.101792

    • Summary: This research investigates the cosmological dynamics and thermodynamic behavior within the f(Q, C) gravity framework, analyzing the viability of this modified gravity theory in explaining the universe’s accelerated expansion and other cosmological phenomena through analytical methods and observational data.

  4. “Stability Analysis of Cosmological Model in f(T) Gravity”

    • Publication: Modern Physics Letters A

    • Date: January 20, 2025

    • DOI: 10.1142/S0217732324502067

    • Summary: This paper focuses on the stability analysis of cosmological models within the f(T) gravity framework, where T denotes the torsion scalar in teleparallel gravity. Using dynamical system techniques, the study evaluates stability conditions and discusses physical implications for cosmic evolution.

  5. “Dynamical System Analysis of Scalar Field Cosmology in f(Q, T) Gravity with q(z) Parametrization”

    • Publication: Gravitation and Cosmology

    • Date: November 23, 2024

    • Summary: This study explores the cosmological characteristics of the function f(Q, T) = αQ + β√Q + γT, with α, β, and γ as constants. By considering the deceleration parameter in the form q(z) = q₀ + q₁[z(1+z)/(1+z²)], the authors conduct a dynamical system analysis to understand the universe’s evolution within this modified gravity framework.

Conclusion

While Amit Samaddar is a promising researcher with impressive early-career achievements, the Best Researcher Award is usually granted to individuals with a well-established, long-term impact in their field. However, given his strong publication record, research contributions in cosmology, and technical expertise, he could be considered for an Emerging Researcher or Young Researcher Award, recognizing his outstanding potential in theoretical and observational cosmology.

Hossein Ghaffarnejad | Cosmology | Best Researcher Award

Prof. Hossein Ghaffarnejad | Cosmology | Best Researcher Award

Lecturer at Semnan university, Iran

Hossein Ghaffarnejad is a professor of theoretical physics at Semnan University, Iran. Born in 1967 in Tehran, he specializes in gravitational physics, black holes, and quantum gravity. He earned his Ph.D. in 2006 from Shahid Beheshti University, focusing on gravitational scalar-tensor theories and Bohmian quantum gravity. With extensive teaching and research experience, he has contributed to various fields, including holography and cosmology. He has held multiple academic leadership roles (2012–2024) and published extensively in prestigious journals. He is also an active reviewer for top physics journals and a member of leading scientific societies. 🚀📚🔬

Professional Profile

Google Scholar

Orcid

Education & Experience 🎓🔬

Ph.D. in Physics (2006) – Shahid Beheshti University, Tehran 🏫
M.Sc. in Physics (1998) – Sharif University of Technology 📖
B.Sc. in Physics (1995) – University of Tehran ⚛️
Professor of Theoretical Physics – Semnan University, Iran (2006–Present) 👨‍🏫
Former Dean & Manager – Multiple administrative roles (2012–2024) 🏛️

Professional Development 📚🔍

Hossein Ghaffarnejad has actively contributed to the advancement of theoretical physics. His research spans gravitational physics, cosmology, and alternative gravity models. He has presented at international conferences in Slovakia, Russia, Greece, and CERN, sharing insights on black hole thermodynamics, dark matter, and quantum gravity. As a prolific author, he has translated fundamental physics books into Persian and supervised multiple Ph.D. and MSc students. His dedication to teaching includes courses like Quantum Mechanics, General Relativity, and String Theory. He also reviews for prestigious journals, ensuring high-quality research dissemination in astrophysics and cosmology. 🌌📖🔭

Research Focus 🛸🖥️

Hossein Ghaffarnejad’s research revolves around gravitational physics and quantum gravity. He explores black holes, cosmology, holography, gravitational lensing, and time travel theories. His studies on dark matter, dark energy, and galaxy rotation curves contribute to alternative gravity models. He has also delved into machine learning applications in gravitational research, advancing computational physics. His work seeks to uncover quantum field interactions, black hole thermodynamics, and metric signature transitions in quantum cosmology. With an interdisciplinary approach, he bridges theoretical frameworks with observational phenomena, shaping modern physics perspectives. 🚀🌌⚛️

Awards & Honors 🏆🎖️

🏅 Multiple Academic Leadership Roles (2012–2024) – Faculty Management Positions 🏛️
🏅 Prestigious Journal Reviewer – Recognized for reviewing high-impact physics journals 📰
🏅 Keynote Speaker & Presenter – International conferences in Slovakia, Russia, Greece, and CERN 🌍
🏅 Prolific Author – Published extensively in theoretical physics and translated major physics books 📚

Publication Top Notes

  1. Title: Effects of a Cloud of Strings on the Extended Phase Space of Einstein–Gauss–Bonnet AdS Black Holes

  2. Title: Quintessence Reissner–Nordström Anti-de Sitter Black Holes and Joule–Thomson Effect

    • Publication: International Journal of Theoretical Physics

    • Year: 2018 (June 15)

    • DOI: 10.1007/s10773-018-3693-7

    • Source: Crossref

  3. Title: Gravitational Lensing of Charged Ayon-Beato-García Black Holes and Nonlinear Effects of Maxwell Fields

    • Publication: Advances in High Energy Physics

    • Year: 2018

    • DOI: 10.1155/2018/3067272

    • Source: Crossref

  4. Title: Schwarzschild-de Sitter Black Hole in Canonical Quantization

  5. Title: Dynamical System Approach to Scalar–Vector–Tensor Cosmology

Conclusion:

Prof. Hossein Ghaffarnejad is highly suitable for a Best Researcher Award due to his outstanding contributions to theoretical physics, extensive research output, mentorship, and scholarly influence. His diverse academic achievements and global recognition in gravitational physics make him a strong candidate for this honor.