Homnath luitel | Condensed Matter Physics | Young Scientist Award

Dr. Homnath luitel | Condensed Matter Physics | Young Scientist Award

Assistant Professor at Nar Bahadur Bhandari Government College, Tadong , Gangtok, under education department, Govt. Of Sikkim, India

Dr. Homnath Luitel is an accomplished physicist and educator 👨‍🏫 with a diverse academic and research background in condensed matter physics and geophysics. With a PhD from the Homi Bhabha National Institute (conducted at VECC, Kolkata), he has delved deeply into the quantum-level behavior of materials. Currently serving as an Assistant Professor in the Education Department, Government of Sikkim 🇮🇳, and most recently a Post-Doctoral Research Fellow at the School of Physics, Wits University 🇿🇦, he exemplifies a blend of academic excellence and practical expertise. His work spans cutting-edge domains like DMS, spintronics, magnetism, and Himalayan slope stability 🏔️. Honored with multiple awards including Best Research Contribution (HBNI, 2018) and recognitions by Elsevier and Taylor & Francis 🏆, he’s also a national-level exam qualifier (GATE, JEST, IIT-JAM). Dr. Luitel continues to inspire with his commitment to science, mentorship, and interdisciplinary innovation. 🌟

Professional Profile 

Orcid

Scopus

Google Scholar

🎓 Education

Dr. Homnath Luitel’s academic path reflects a consistent pursuit of excellence 📚. He earned his B.Sc. (Honours) from Sikkim Government College under Sikkim University, followed by an M.Sc. in Physics from Sikkim University 🧠. His passion led him to complete a post-M.Sc. research course at the prestigious VECC, Kolkata, which paved the way for his PhD at Homi Bhabha National Institute, Mumbai, with his research carried out at VECC 🧪. Along the way, he demonstrated outstanding academic merit by qualifying multiple national exams such as IIT-JAM, GATE, JEST, and SLET-NE 🎖️. This rigorous and progressive education laid a strong foundation for his foray into high-impact research. His early education through CBSE also reflects a consistent academic focus right from school days. From the Eastern Himalayas to national research hubs, Dr. Luitel’s educational journey bridges regions and research ecosystems seamlessly. 🌐

🧑‍🏫 Professional Experience

Dr. Luitel’s professional career is both impactful and versatile, merging teaching with pioneering research 🏫🔬. Since 2019, he has been nurturing minds as an Assistant Professor in the Education Department, Government of Sikkim, and currently contributes his expertise to the Department of Physics at Nar Bahadur Bhandari Government College, Tadong. In 2024, his research took an international turn with a Post-Doctoral Fellowship at the School of Physics, University of the Witwatersrand, South Africa 🌍. His teaching is enriched by hands-on research in condensed matter physics and functional materials, allowing students to gain both theoretical insights and experimental understanding. His lab-based expertise includes operating SQUIDs, dilution fridges, and various spectroscopy and characterization tools ⚙️. With a clear passion for both learning and imparting knowledge, Dr. Luitel exemplifies the modern-day scholar who balances academia, research, and mentorship with dedication. 🎓📈

🔬 Research Interest

Dr. Luitel’s research interests are rooted in the intricate physics of materials and earth systems 🌌🌍. In condensed matter physics, his work focuses on defects in solids, dilute magnetic semiconductors (DMS), magnetism, spintronics, and diamond-based functional materials 💎🧲. His expertise with advanced characterization tools like PAS, SQUID, and DFT enables him to probe materials at atomic scales, uncovering phenomena vital to future electronics and quantum computing 🖥️. Beyond materials, he explores geophysical challenges such as slope stability and subsurface profiling in the Himalayan terrain using electrical resistivity surveys (ERS) and geotechnical methods ⛰️. His interdisciplinary approach allows him to connect quantum-scale phenomena with macroscale natural systems, offering unique insights for both applied science and sustainable development. Dr. Luitel’s dual engagement with the physical and geophysical domains reflects a rare scientific breadth and a drive to address both fundamental and societal challenges. 🌟

🏅 Awards and Honors

Dr. Homnath Luitel has been the recipient of multiple prestigious recognitions that celebrate his research prowess and academic contributions 🏆. He earned the Best Research Contribution Award at HBNI’s RSM in 2018 and the Best Research Award in the theme Science, Technology, and Society at the 6th Bharatiya Vigyan Sammelan 2023 in Gujarat 🥇. As a recognized reviewer for renowned journals including Philosophical Magazine (Taylor & Francis), JMMM, and Computational Condensed Matter (Elsevier), his peer-review expertise is acknowledged internationally 📑🌐. He was also invited as a Resource Person and Jury Member for the Young Scientist Conference at IISF 2022, hosted by India’s Department of Biotechnology and allied national science agencies 👨‍⚖️🔬. His success in competitive national exams like GATE, JEST, and SLET further showcases his academic excellence. These honors not only mark his scientific impact but also his role in mentoring and evaluating emerging talent in India’s science landscape.

Publications Top Notes 

1. First-principles study of magnetic properties of the transition metal ion-doped methylammonium lead bromide

  • Authors: Homnath Luitel

  • Year: 2022

  • DOI: 10.1142/s0217979222502022

  • Source: International Journal of Modern Physics B

  • Summary: This study employs first-principles calculations to investigate the magnetic properties of methylammonium lead bromide (MAPbBr₃) doped with transition metal ions. The research aims to understand how doping influences the magnetic behavior of this perovskite material, which is significant for potential applications in spintronics.


2. Half-metallic ferromagnetism in molybdenum doped methylammonium lead halides (MAPbX₃, X = Cl, Br, I) system: First-principles study

  • Authors: Homnath Luitel

  • Year: 2021

  • DOI: 10.1016/j.jmmm.2020.167463

  • Source: Journal of Magnetism and Magnetic Materials

  • Summary: The paper explores the electronic and magnetic properties of molybdenum-doped methylammonium lead halides using first-principles calculations. The findings suggest that such doping can induce half-metallic ferromagnetism, making these materials promising candidates for spintronic devices.


3. Room-temperature ferromagnetism in boron-doped oxides: a combined first-principle and experimental study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1080/09500839.2020.1733122

  • Source: Philosophical Magazine Letters

  • Summary: This study combines experimental techniques and first-principles calculations to investigate room-temperature ferromagnetism in boron-doped oxides. The research provides insights into the mechanisms driving ferromagnetism in these materials, which are relevant for spintronic applications.


4. NMR study of defect-induced magnetism in methylammonium lead iodide perovskite

  • Authors: Bilwadal Bandyopadhyay, Homnath Luitel, Sayantan Sil, Joydeep Dhar, Mahuya Chakrabarti, Palash Nath, Partha P. Ray, Dirtha Sanyal

  • Year: 2020

  • DOI: 10.1103/PhysRevB.101.094417

  • Source: Physical Review B

  • Summary: The paper presents nuclear magnetic resonance (NMR) studies on methylammonium lead iodide perovskite, revealing that defects such as iodine and lead vacancies can induce magnetism. The findings highlight the role of structural defects in influencing the magnetic properties of perovskite materials.


5. Ferromagnetic ordering in cobalt doped methylammonium lead bromide: An ab-initio study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.cocom.2019.e00444

  • Source: Computational Condensed Matter

  • Summary: This ab-initio study investigates the magnetic properties of cobalt-doped methylammonium lead bromide. The research demonstrates that cobalt doping can lead to ferromagnetic ordering, suggesting potential applications in spintronic devices.


6. Ferromagnetic property of copper doped ZnO: a first-principles study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.cocom.2020.e00455

  • Source: Computational Condensed Matter

  • Summary: The study uses first-principles calculations to explore the ferromagnetic properties of copper-doped ZnO. The results indicate that copper doping induces ferromagnetism in ZnO, which is significant for the development of dilute magnetic semiconductors.


7. Half metallic ferromagnetic and optical properties of ruthenium-doped zincblende ZnS: A first principles study

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.jpcs.2019.109175

  • Source: Journal of Physics and Chemistry of Solids

  • Summary: This paper investigates the electronic, magnetic, and optical properties of ruthenium-doped zincblende ZnS using first-principles methods. The findings suggest that such doping can result in half-metallic ferromagnetism, enhancing the material’s suitability for spintronic applications. 


8. Defect induced room temperature ferromagnetism in methylammonium lead iodide perovskite

  • Authors: Sayantan Sil, Homnath Luitel, Mahuya Chakrabarty, Partha P. Ray, Joydeep Dhar, Bilwadal Bandyopadhyay, Dirtha Sanyal

  • Year: 2020

  • DOI: 10.1016/j.physleta.2020.126278

  • Source: Physics Letters A

  • Summary: The research combines experimental observations and theoretical calculations to demonstrate that defects, particularly iodide vacancies, can induce room-temperature ferromagnetism in methylammonium lead iodide perovskite. This highlights the potential of defect engineering in tailoring magnetic properties of perovskite material.


9. Enhanced stability and ferromagnetic property in transition metals co-doped rutile TiO₂

  • Authors: Homnath Luitel

  • Year: 2020

  • DOI: 10.1016/j.jpcs.2020.109582

  • Source: Journal of Physics and Chemistry of Solids

  • Summary: This study explores the effects of co-doping rutile TiO₂ with transition metals on its structural stability and magnetic properties. The results indicate that co-doping enhances both the stability and ferromagnetic behavior of TiO₂, making it a promising material for spintronic applications.


10. Magnetic properties of transition metal doped SnO₂: A detailed theoretical study

  • Authors: Homnath Luitel

  • Year: 2019

  • DOI: 10.1016/j.cocom.2019.e00393

  • Source: Computational Condensed Matter

  • Summary: The paper presents a theoretical investigation into the magnetic properties of SnO₂ doped with various transition metals. The findings provide insights into how different dopants influence the magnetic behavior of SnO₂, which is valuable for designing materials with desired magnetic properties.

Conclusion 

In sum, Dr. Homnath Luitel stands out as a dynamic physicist, dedicated educator, and interdisciplinary researcher whose work spans from the quantum to the geophysical 🌐. With a solid foundation in theoretical and experimental physics, his academic journey from the Himalayan region to global research hubs showcases both resilience and brilliance 🌄🔭. He continues to bridge high-end research with grassroots teaching, inspiring young minds while contributing to advancements in material science, spintronics, and sustainable geoscience. Recognized both nationally and internationally for his research and review contributions, Dr. Luitel is a shining example of scholarly excellence 🌟. His technical toolkit, spanning DFT simulations to SQUID operations and ERS surveys, further demonstrates his rare combination of skills and adaptability 🔧🔬. As he progresses in his career, his vision of science as a tool for understanding both the smallest particles and the largest landscapes remains an inspiration for future generations. 💡🌍

Rachid Amrani | Physics | Best Researcher Award

Dr. Rachid Amrani | Physics | Best Researcher Award

Dr. Rachid Amrani, University of Algiers, Algeria

Dr. Rachid Amrani is a faculty member at the University of Algiers, Algeria. He currently holds the position of Lecturer B, a role he has occupied since July 2023, after serving as Lecturer A from February 2018. Before that, he was an Assistant Professor at the University of Algiers from February 2017 to February 2018. Dr. Amrani has a strong research background, having worked as a Research Scientist at the Center of Development of Advanced Technologies (CDTA) in Algiers from March 2016 to January 2017. Earlier in his career, from 2011 to 2013, he served as a Research Assistant to Dr. Yvan Cuminal at the Institut D’électronique Du Sud (IES), CNRS, University of Montpellier, France. His academic and research experience spans various institutions, focusing on advanced technologies and electronics.

PROFILE

Scopus Profile

Educational Details

Dr. Rachid Amrani earned his Ph.D. from the University of Montpellier, France, in December 2013, with a thesis focused on the “Growth and Properties of Hydrogenated Silicon Thin Films Deposited Near the Nanocrystalline Amorphous Transition Region from Argon Diluted Silane Plasma.” This work reflects his deep expertise in the field of material sciences, particularly in the study of thin films. Prior to his doctoral studies, Dr. Amrani completed a Magister degree in Physics with a specialization in material sciences at Université d’Oran Es-Senia, Algeria, from 2001 to 2006. His Magister thesis explored the “Optical Properties of Nanocrystalline Silicon Films Prepared by RF Magnetron Sputtering.” His academic journey began at Université d’Oran Es-Senia, where he earned his undergraduate degree in Physics with a focus on Theoretical Physics between 1992 and 1997. Throughout his career, Dr. Amrani has demonstrated a strong foundation in both theoretical and applied physics, particularly in the study of nanomaterials and thin film technologies.

Research  Interest

Dr. Rachid Amrani’s research interests lie at the intersection of material sciences and nanotechnology, with a particular focus on the growth, deposition, and characterization of thin films. His expertise encompasses a range of advanced techniques, including Plasma Enhanced Chemical Vapor Deposition (PECVD), RF magnetron sputtering, and thermal evaporation. Dr. Amrani has extensive experience in cleanroom processes, such as UV lithography, chemical etching, and reactive ion etching, which are essential for fabricating precise nanostructures. His work in characterizing thin films involves sophisticated methods like ellipsometry, Raman scattering spectroscopy, and Atomic Force Microscopy (AFM), aiming to understand the optical and structural properties of nanocrystalline silicon films and other functional materials. Dr. Amrani’s contributions to the field are reflected in his numerous publications and presentations at international conferences, where he has shared his findings on nanomaterials for energy conversion, storage, and other cutting-edge applications in electronics and photonics.

Honours and Awards

The Journal of Non-Crystalline Solids (Elsevier) and the Journal of Nanotechnology (IOPscience) are both prestigious publications in their respective fields. The Journal of Non-Crystalline Solids focuses on the latest research in amorphous materials, including glasses, polymers, and composites, and is known for publishing cutting-edge studies that advance the understanding of non-crystalline structures. Meanwhile, the Journal of Nanotechnology provides a platform for the dissemination of research on nanoscience and nanotechnology, covering topics ranging from the synthesis and characterization of nanomaterials to their applications in various industries. These journals are widely recognized for their rigorous peer-review process and their role in promoting scientific advancements.

 

Top Notable Publications

Investigation of Structural Heterogeneities in Hydrogenated Nanocrystalline Silicon Thin Films from Argon-Diluted Silane Dusty Plasma PECVD

Authors: R. Amrani, F. Lekoui, F. Pichot, S. Oussalah, Y. Cuminal

Year: 2024

Journal: Vacuum

Volume: 229

Article ID: 113568

Citations: 0

Machine Learning-Based Method for Predicting C–V-T Characteristics and Electrical Parameters of GaAs/AlGaAs Multi-Quantum Wells Schottky Diodes

Authors: E. Garoudja, A. Baouta, A. Derbal, N. Sengouga, M. Henini

Year: 2024

Journal: Physica B: Condensed Matter

Volume: 685

Article ID: 415998

Citations: 0

Structural and Optical Properties of Highly Ag-Doped TiO2 Thin Films Prepared by Flash Thermal Evaporation

Authors: R. Amrani, F. Lekoui, E. Garoudja, S. Oussalah, S. Hassani

Year: 2024

Journal: Physica Scripta

Volume: 99(6)

Article ID: 065914

Citations: 0

Optical Parameters Extraction of Zinc Oxide Thin Films Doped with Manganese Using an Innovative Technique Based on the Dragonfly Algorithm and Their Correlation to the Structural Properties

Authors: K. Settara, F. Lekoui, H. Akkari, S. Oussalah, S. Hassani

Year: 2024

Journal: Journal of Ovonic Research

Volume: 20(3)

Pages: 365–380

Citations: 0

On the Substrate Heating Effects on Structural, Mechanical, and Linear/Non-Linear Optical Properties of Ag–Mn Co-Doped ZnO Thin Films

Authors: F. Lekoui, R. Amrani, S. Hassani, N. Hendaoui, S. Oussalah

Year: 2024

Journal: Optical Materials

Volume: 150

Article ID: 115151

Citations: 4

A B3LYP-D3 Computational Study of Electronic, Structural, and Torsional Dynamic Properties of Mono-Substituted Naphthalenes: The Effect of the Nature and Position of Substituent

Authors: A. Benalia, A. Boukaoud, R. Amrani, A. Krid

Year: 2024

Journal: Journal of Molecular Modeling

Volume: 30(3)

Article ID: 88

Citations: 2

Electrical Parameters Extraction of Diode Using Whale Optimization Algorithm

Authors: E. Garoudja, W. Filali, S. Oussalah, F. Lekoui, R. Amrani

Year: 2024

Conference: 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC 2024)

Citations: 0

Effect of Ti/TiN Thin Film Geometrical Design on the Response of RTDs

Authors: W. Filali, E. Garoudja, F. Lekoui, S. Oussalah, R. Amrani

Year: 2024

Conference: 2nd International Conference on Electrical Engineering and Automatic Control (ICEEAC 2024)

Citations: 0

Artificial Intelligence Approach to Analyze SIMS Profiles of 11B, 31P, and 75As in n- and p-type Silicon Substrates: Experimental Investigation

Authors: W. Filali, M. Boubaaya, E. Garoudja, S. Oussalah, N. Sengouga

Year: 2023

Journal: Zeitschrift für Naturforschung – Section A Journal of Physical Sciences

Volume: 78(12)

Pages: 1143–1151

Citations: 0

Elaboration and Characterization of Pure ZnO, Ag, and Ag-Fe

Thin Films: Effect of Ag and Ag-Fe Doping on ZnO Physical Properties

Authors: F. Lekoui, S. Hassani, E. Garoudja, O. Sifi, S. Oussalah

Year: 2023

Journal: Revista Mexicana de Fisica

Volume: 69(5)

Article ID: 051005

Citations: 3