Dr. Adewale Sedara | Engineering | Research Excellence Award

Dr. Adewale Sedara | Engineering | Research Excellence Award

Research Associate | University of Wisconsin-Madison | United States

Dr. Adewale Sedara is a distinguished scholar whose work demonstrates sustained excellence in Engineering research, innovation, and applied impact. His expertise spans Engineering design optimization, Engineering simulation, Engineering soil machine interaction, and Engineering systems modeling, with a strong emphasis on data driven Engineering solutions. Dr. Adewale Sedara has authored multiple peer reviewed Engineering publications that collectively reflect rigorous Engineering methodology and practical Engineering relevance, generating notable citation impact within the global Engineering community. His Engineering research integrates advanced computational Engineering tools with experimental Engineering validation, strengthening collaboration across academic and industry focused Engineering environments. Through interdisciplinary Engineering partnerships, his contributions advance sustainable Engineering practices, agricultural Engineering efficiency, and infrastructure Engineering performance. His Engineering outcomes support societal needs by improving resource efficiency, environmental resilience, and technology driven Engineering decision making. Dr. Adewale Sedara continues to influence Engineering scholarship through high quality Engineering dissemination, collaborative Engineering engagement, and impactful Engineering innovation. Google Scholar profile of 113 Citations, 5 h- index, 2 i10- index.

Citation Metrics (Google Scholar)

113
100
80
60
40
20
0

Citations

113

h-index

5

i10-index

2

Citations

h-index

i10-index

Featured Publications

Dr. Leyu Wang | Engineering | Research Excellence Award

Dr. Leyu Wang | Engineering | Research Excellence Award

Assistant Research Professor | Goerge Mason University | United States

Dr. Leyu Wang is a highly accomplished researcher whose work demonstrates sustained excellence in engineering across multidisciplinary domains. His expertise centers on advanced engineering simulation, battery safety engineering, multiphysics engineering modeling, fracture mechanics engineering, and intelligent engineering material characterization. He has authored nineteen peer reviewed publications with strong citation visibility, reflecting the impact of his engineering contributions to battery engineering, vehicle engineering safety, aerospace engineering applications, and computational engineering methods. Dr. Leyu Wang plays a leading role in collaborative engineering projects with governmental agencies, industry partners, and academic institutions, contributing authoritative engineering frameworks for battery engineering safety, electric vehicle engineering crash analysis, and lightweight engineering design. His engineering research supports societal advancement by improving transportation engineering safety, sustainable energy engineering systems, and predictive engineering tools used in policy and industrial decision making. Through high impact engineering publications, interdisciplinary engineering collaboration, and translational engineering innovation, he continues to advance global engineering knowledge and applied engineering solutions. ORCID profile of 19 Documents.

Featured Publications

Xiangjun Wang | Engineering | Excellence in Research

Mr. Xiangjun Wang | Engineering | Excellence in Research

Dalian Maritime University | China

Mr. Xiangjun Wang  is an accomplished researcher whose expertise centers on Engineering innovation across electrical systems, control technologies, and applied Engineering solutions. His work advances Engineering practices in intelligent equipment, motor control, and system optimization, reflecting strong Engineering rigor and interdisciplinary Engineering integration. He has authored multiple peer reviewed publications in Engineering journals, holds several invention patents, and his Engineering outputs have received scholarly citations and professional recognition. Through collaborative Engineering projects with research institutions and industry partners, his Engineering contributions strengthen applied Engineering development, technology transfer, and solution oriented Engineering deployment. He is widely recognized for Engineering problem solving, Engineering driven modeling, and Engineering based simulation and validation, enabling translation of theoretical Engineering concepts into reliable applications. The societal impact of his Engineering research includes enhanced efficiency, safety, and sustainability, supporting Engineering innovation, Engineering resilience, and Engineering capacity building for contemporary technological needs at an international level. Professional academic record validated through Scopus profile of 3 Documents.

Featured Publications


Simplified Algorithm for Multi-Step Model Predictive Control of Permanent Magnet Synchronous Motors for Ship Propulsion

IEEJ Transactions on Electrical and Electronic Engineering, February 2025
Authors: Xiangjun Wang, Haichuan Cao, Hao Sun, Pengxiang Wang


Research on Downhole Synchronous Generator with End Magnetization and Voltage Stabilization Structure
Conference Paper, November 2023
Authors: Haichuan Cao, Xiangjun Wang

Assoc. Prof. Dr. Ali Mosallanejad | Engineering | Excellence in Research

Assoc. Prof. Dr. Ali Mosallanejad | Engineering | Excellence in Research

Professor | Shahid Beheshti Univesity | Iran

Assoc. Prof. Dr. Ali Mosallanejad is a recognized academic and researcher whose expertise lies broadly within Engineering, with a strong focus on electrical and power Engineering systems. His work in Engineering spans power electronics, HVDC technologies, power system analysis, and advanced Engineering modeling and simulation. He has made sustained contributions to Engineering through high quality journal articles, conference publications, and applied Engineering solutions addressing complex industrial challenges. His research output includes numerous peer reviewed Engineering publications that have attracted wide international citations, reflecting strong global visibility and impact within the Engineering community. He has actively collaborated with Engineering researchers, industry experts, and multidisciplinary teams, strengthening knowledge transfer between academic Engineering research and real world Engineering applications. Through Engineering driven innovation, his work has supported improvements in energy systems reliability, efficiency, and technological sustainability, demonstrating clear societal and industrial relevance. His Engineering contributions continue to influence modern Engineering practices, policy oriented research, and future Engineering developments at both national and international levels. Google Scholar profile of 963 Citations, 16 h-index, 30 i10 index.

Citation Metrics (Google Scholar)

1000
800
600
400
200
0

963
Citations

16
h-index

30
i10-index

                                       ■ Citations                        ■ h-index                       ■ i10-index

Featured Publications

Dr. Weiwei Zhao | Engineering | Research Excellence Award

Dr. Weiwei Zhao | Engineering | Research Excellence Award

Research Fellow | University of Birmingham | United Kingdom

Dr. weiwei zhao is a distinguished researcher whose expertise spans multidisciplinary engineering with strong contributions to mechanical engineering, chemical engineering, electronic engineering, and energy systems engineering. his research integrates advanced engineering design, engineering modeling, engineering experimentation, and engineering optimization to address challenges in energy storage, functional materials, and sustainable engineering technologies. he has authored more than thirty peer reviewed publications in high impact journals, demonstrating leadership in engineering innovation and collaborative engineering research with international academic and industrial partners. his work delivers significant societal impact by advancing energy efficient engineering solutions, supporting decarbonisation engineering strategies, and enabling next generation engineering devices for clean energy and smart systems. his engineering contributions are widely recognised for their practical relevance, translational engineering value, and global engineering influence. Professional words Google Scholar profile of 1759 Citations, 17 h index, 23 i10 index.

Citation Metrics (Google Scholar)

1800
1350
900
450
0

1759
Citations

17
h-index

23
i10-index

                ■ Citations      ■ h-index
  ■ i10-index

Featured Publications

Dr. Helena Navarro | Engineering | Research Excellence Award

Dr. Helena Navarro | Engineering | Research Excellence Award

Senior Research Fellow | University Of Birmingham | United Kingdom

Dr. Helena Navarro is an internationally recognised researcher whose work reflects sustained excellence in Engineering research, innovation, and global impact. Her expertise is deeply embedded in core Engineering domains including thermal Engineering, energy Engineering, materials Engineering, chemical Engineering, and systems Engineering, with a strong emphasis on sustainable energy Engineering solutions and industrial decarbonisation. Dr. Helena Navarro has authored more than fifty high quality peer reviewed Engineering publications and book chapters that are widely cited within the international Engineering community, demonstrating both depth and continuity of Engineering scholarship. Her Engineering research has been supported by competitive funding and advanced through large scale collaborative Engineering projects involving academia, industry, and international research organisations. Through Engineering driven innovation, she has contributed to patents, technology transfer activities, and pilot scale Engineering deployment, reinforcing the real world value of Engineering research. Her Engineering leadership has strengthened interdisciplinary Engineering collaboration, advanced clean energy Engineering technologies, and delivered measurable societal and industrial benefits through improved efficiency and reduced emissions. Google Scholar profile of 2714 Citations, 29 h-index, 44 i10 index.

Citation Metrics (Google Scholar)

2714
2000
1500
1000
500
0

2714
Citations

29
h-index

44
i10-index

                                   ■ Citations                        ■ h-index                        ■ i10-index


Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review

Renewable and Sustainable Energy Reviews, 2019
Cited by many (Scopus/Google Scholar)


Selection and characterization of recycled materials for sensible thermal energy storage

Solar Energy Materials and Solar Cells, 2012
Cited by 143+

Assist. Prof. Dr. Feng Chieh Lin | Engineering | Research Excellence Award

Assist. Prof. Dr. Feng Chieh Lin | Engineering | Research Excellence Award

Research Assisant Professor | National Taipei University of Technology | Taiwan

Assist. Prof. Dr. Feng Chieh Lin is a distinguished scholar whose contributions continue to strengthen global research in engineering with a focus on advanced motor drive systems, power converter control, and intelligent diagnostic technologies. His work integrates engineering principles with practical innovation to address challenges in mechatronics, motor drives, and power electronic applications. Through sustained research leadership, he has advanced engineering methodologies for high performance electric machines, with a particular emphasis on demagnetization diagnosis, deep learning based sampling analysis, and precision converter control. His academic role enables him to merge engineering theory with industrial insight, building collaborations that promote technology transfer and practical implementation. He has contributed to influential research projects that support national and industrial development, demonstrating how engineering solutions can enhance energy efficiency, operational reliability, and sustainable technological growth. His experience in research management and product innovation has further strengthened his ability to guide engineering development across multidisciplinary domains. He continues to publish impactful work that reflects rigorous engineering analysis, forward looking design perspectives, and practical societal relevance. His publications and citations demonstrate consistent global engagement, and his engineering research has supported collaborations between academia, research institutes, and industry partners. His contributions highlight the role of engineering in advancing intelligent control strategies, improving machine performance, and shaping modern power electronic applications. His expertise positioned at the intersection of engineering science and applied innovation reflects a commitment to knowledge creation and societal benefit. He remains dedicated to fostering engineering excellence while contributing to high level academic and industrial research communities through impactful publications and technical leadership. Scopus profile of 355 Citations, 25 Documents, 10 h index.

Profiles: Scopus | ORCID

Featured Publications

1. Chen, C.-S., Lin, C.-J., Liu, J.-F., & Lin, F.-C. (2026). IPMSM demagnetization fault diagnosis based on ultra-low sampling frequency data re-indexing restoration method. International Journal of Data Science and Analytics.

2. Chen, C.-S., Wu, Y.-Y., Lin, C.-J., & Lin, F.-C. (2025). Reindexing method for ultralow-sampling-rate data used in the diagnosis of demagnetization faults in IPMSM. IEEE Transactions on Instrumentation and Measurement.

3. Chen, C. S., Lin, C. J., Lin, Y. J., & Lin, F. C. (2025). Application of multi-objective optimization for path planning and scheduling: The edible oil transportation system framework. Applied Sciences.

4. Chen, C. S., Lin, F. C., Lin, C. J., & Wu, P. H. (2024). The improved ROS-based MTAR navigation framework for service robot: Motion trajectory analysis regulator. IEEE Access.

5. Chen, C.-S., Lin, C.-J., Yang, F.-J., & Lin, F.-C. (2024). Model design of inter-turn short circuits in internal permanent magnet synchronous motors and application of wavelet transform for fault diagnosis. Applied Sciences.

Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Assoc. Prof. Dr. Mohammad Silani | Engineering | Research Excellence Award

Associate Professor | Isfahan University of Technology | Iran

Assoc. Prof. Dr. Mohammad Silani is a distinguished figure in Engineering research, widely recognized for his contributions to computational mechanics, multiscale material modeling, fracture mechanics, and advanced numerical simulations. With an extensive background in Engineering applications, his work integrates molecular dynamics, finite element analysis, stochastic modeling, and phase-field theory to address complex material behavior in composite and nanocomposite structures. His Engineering research extends across multiscale modeling, machine learning–assisted simulations, and high-fidelity experimentation, establishing him as a leading contributor to Engineering innovation in computational materials science. He has served in multiple advanced academic and scientific capacities, has supervised doctoral and postgraduate research, and has actively collaborated internationally with institutions and Engineering research groups across Europe, Asia, and Australia. His scholarly output reflects a strong Engineering foundation, comprising many high-impact journal publications, conference contributions, and collaborations that have advanced computational Engineering and numerical methodology. His work on nanostructures, wear modeling, fatigue crack propagation, and hydrogen embrittlement demonstrates a deep Engineering perspective in bridging theory, simulation, and physical behavior. As a reviewer for numerous international journals, his expertise supports the global Engineering community through critical evaluation and scientific refinement. His research continues to influence structural integrity, biomaterial mechanics, lattice optimization, composites Engineering, mechanical design, and simulation-driven material development at multi-scale and multi-physics levels. His sustained contributions to Engineering research, academic leadership, and scientific cooperation reflect a career dedicated to advancing knowledge, improving computational frameworks, and developing reliable Engineering tools for industrial and scientific application. His work stands as a reference point for emerging researchers in Engineering modeling and mechanical material characterization, highlighting precision, innovation, and impactful academic leadership in modern Engineering science. Google Scholar profile of 3041 Citations, 22 h-index, 32 i10-index.

Profile: Google Scholar

Featured Publications

1. Koupaei, F. B., Javanbakht, M., Silani, M., Mosallanejad, M. H., & Saboori, A. (2026). Mechanics-based phase-field model for directional microstructure evolution: Multiscale finite element simulation of IN718 in DED process. Computational Materials Science, 261, 114342.

2. Sabetghadam-Isfahani, A., Silani, M., Javanbakht, M., & others. (2025). Molecular dynamics analysis of temperature and shear stress effects on nickel bi-crystal amorphization. Iranian Journal of Chemistry and Chemical Engineering, e732047.

3. Varshabi, N., Jafari, M., Jamshidian, M., Silani, M., Thamburaja, P., & Rabczuk, T. (2025). Phase-field modeling of stressed grain growth in nanocrystalline metals. International Journal of Mechanical Sciences, 110951.

4. Saffari, M. M., Javanbakht, M., Silani, M., & Jafarzadeh, H. (2025). Stress analysis of nanostructures including nanovoids and inclusions based on nonlocal elasticity theory with different kernels. International Journal of Applied Mechanics, 17(6), 2550041.

5. Sabetghadam-Isfahani, A., Javanbakht, M., & Silani, M. (2025). Atomistic-informed phase-field modeling of edge dislocation evolution in Σ3, Σ9, and Σ19 silicon bi-crystals. Computational Materials Science, 254, 113893.

Dr. Ricardo Alberto Rodríguez Carvajal | Engineering | Excellence in Innovation

Dr. Ricardo Alberto Rodríguez Carvajal | Engineering | Excellence in Innovation

Professor | University of Guanajuato | Mexico

Dr. Ricardo Alberto Rodríguez Carvajal is a distinguished academic whose multidisciplinary contributions have significantly advanced Engineering research, technological innovation, and applied knowledge transfer across institutional, industrial, and social environments. His extensive trajectory reflects leadership in Engineering project development, Engineering management, Engineering innovation, and Engineering-based problem-solving applied to solar energy systems, digital transformation, organizational sustainability, and technology transfer. With a strong record of publications in Engineering journals, collaborative research networks, and participation in national and international Engineering associations, he has demonstrated a consistent capacity to connect Engineering theory with practice through strategic collaborations, patent development, and impactful industrial partnerships. His work spans solar-energy Engineering, materials Engineering, industrial Engineering, and computational Engineering, integrating these fields into high-value technological ecosystems. His role in developing prototypes, coordinating multidisciplinary Engineering teams, and guiding projects from conceptualization to market transfer has strengthened regional innovation capabilities and supported industry-focused research agendas. Through leadership in academic committees, graduate program coordination, and supervision of numerous postgraduate theses in Engineering and innovation, he has also contributed to shaping new generations of specialists capable of applying Engineering principles to emerging societal challenges. His intellectual production includes articles, books, and chapters addressing Engineering processes, knowledge management, and innovation systems, while his participation in collaborative networks has enhanced knowledge circulation across Engineering communities. His societal impact is evident in applied research projects for renewable energy, agro-industrial transformation, technology-based entrepreneurship, and sustainable development, all grounded in rigorous Engineering methodologies. This consolidated profile reflects an academic committed to expanding the frontiers of Engineering and advancing technological solutions with broad social relevance. Google Scholar profile of 200 Citations, 8 h-index, 8 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Herrera-Zamora, D. M., Lizama-Tzec, F. I., Santos-González, I., & others. (2020). Electrodeposited black cobalt selective coatings for application in solar thermal collectors: Fabrication, characterization, and stability. Solar Energy, 207, 1132–1145.

2. Pitalúa-Díaz, N., Herrera-López, E. J., Valencia-Palomo, G., & others. (2015). Comparative analysis between conventional PI and fuzzy logic PI controllers for indoor benzene concentrations. Sustainability, 7(5), 5398–5412.

3. León Lara, J. D., & Rodríguez Carvajal, R. A. (2014). Customer relationship management (CRM), a tool for creating competitive strategies. Epistemus (Sonora), 8(17), 81–87.

4. Isiordia-Lachica, P. C., Valenzuela, A., Rodríguez-Carvajal, R. A., & others. (2020). Identification and analysis of technology and knowledge transfer experiences for the agro-food sector in Mexico. Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 59.

5. Romero-Hidalgo, J. A., Isiordia-Lachica, P. C., Valenzuela, A., & others. (2021). Knowledge and innovation management model in the organizational environment. Information, 12(6), 225.

Prof. Eui-chan Jeon | Engineering | Research Excellence Award

Prof. Eui-chan Jeon | Engineering | Research Excellence Award

Professor | Sejong University | South Korea

Prof. Eui-chan Jeon is a distinguished scholar whose extensive contributions to Engineering and environmental science have positioned him as a leading global authority in climate change mitigation, atmospheric emissions, and sustainable policy development. With a long-standing career marked by influential leadership roles, Prof. Jeon has advanced national and international frameworks through his work with major climate organizations, including key positions related to the IPCC, national carbon-neutrality committees, and major environmental research councils. His expertise spans the Engineering dimensions of greenhouse gas inventories, air-pollution management, emission-factor development, and short-lived climate forcers, and he has consistently shaped policies and methodologies that guide both scientific communities and governmental bodies. His Engineering-driven research portfolio encompasses more than a hundred documents, demonstrating impactful collaborations across academia, industry, and government institutions, while his applied investigations into ammonia emissions, particulate-matter sources, and industrial greenhouse-gas abatement technologies have significantly strengthened environmental decision-making. Prof. Jeon’s work in Engineering has also contributed to advanced modeling systems, emission-characterization frameworks, and mitigation strategies utilized across sectors such as agriculture, waste management, semiconductor manufacturing, and energy industries. His numerous authored and co-authored publications reflect a sustained commitment to Engineering innovation, methodological rigor, and interdisciplinary problem-solving, offering solutions that translate complex scientific insights into practical societal benefits. Prof. Jeon’s Engineering achievements extend to textbook authorship, national consulting, and international project leadership, establishing him as a pivotal figure whose research reshapes climate governance and emission-management standards. His reliable scientific output, strong Engineering foundation, and broad collaborative networks continue to influence sustainable-development pathways and evidence-based environmental reforms. This professional summary is supported by his Scopus profile of 2,082 Citations, 110 Documents, and a 22 h-index.

Profiles: Scopus | ORCID

Featured Publications

1. Effects of Plasma Power on By-Product Gas Formation from CHF₃ and CH₂F₂ Process Gases in Semiconductor Etching Processes. (2025). Applied Sciences Switzerland.

2. Understanding the correlation between the structural and photoluminescent properties of Ca₃(PO₄)₂:Eu³⁺, M⁺ (M⁺ = Li⁺, Na⁺, K⁺) phosphors. (2025). Ceramics International.

3. Thermoelectric properties of SiC nanoparticle-dispersed Bi₁.₉₂₅Ba₀.₀₇₅Sr₂Co₂Oy. (2025). Journal of Alloys and Compounds.

4. A study on the application of an estimated ammonia emission factor reflecting the operating characteristics of open laying hen houses in Korea. (2025). Atmosphere.

5. The impact of plasma intensity on the unused rate in semiconductor manufacturing: Comparative analysis across intensity ranges from 30 to 3000. (2025). Applied Sciences Switzerland.