Dr. Deepakkumar R | Engineering | Best Researcher Award

Dr. Deepakkumar R | Engineering | Best Researcher Award

Assistant Professor | Vellore Institute of Technology | India

Dr. Deepakkumar R is a distinguished Engineering academician and researcher with expertise in Computational Fluid Dynamics, Mechanical Engineering, and Thermal Engineering. His Engineering career reflects deep engagement with teaching, research, and innovation in advanced Engineering systems such as heat exchangers, solar air heaters, hydrogen storage, and fuel cells. He has contributed significantly to Engineering research through his studies on vortex shedding, phase change materials, and multiphase flow analysis. His professional experience includes serving at leading Engineering institutions such as VIT Vellore, SRM Institute of Science and Technology, NIT Andhra Pradesh, and IIITDM Kancheepuram, where he guided numerous Engineering projects and doctoral candidates. His Engineering education spans from a Bachelor’s in Mechanical Engineering to a Ph.D. in Mechanical Engineering from IIITDM Kancheepuram, emphasizing Computational Engineering and simulation of fluid flows. Dr. Deepakkumar’s research skills include expertise in CFD tools like ANSYS Fluent, CATIA, Tecplot, and MATLAB, combined with experimental proficiency in wind and water tunnel analysis. His contributions to Engineering education and innovation have been recognized through multiple awards, including the “Outstanding Research Award” and “Best Research Paper Award,” underlining his excellence in Engineering research and pedagogy. His innovative work also extends to design registration in heat exchanger technology, showcasing his Engineering creativity and applied problem-solving capability. Overall, Dr. Deepakkumar R exemplifies the integration of Engineering research, teaching, and technology-driven innovation, continuously contributing to sustainable and renewable energy systems within the broader Engineering community. His Scopus profile of 184 Citations, 22 Documents, 7 h-index.

Profiles: Scopus | Google Scholar | ORCID

Featured Publications

1. Deepakkumar, R., & Jayavel, S. (2017). Air side performance of finned-tube heat exchanger with combination of circular and elliptical tubes. Applied Thermal Engineering, 119, 360–372.

2. Deepakkumar, R., Jayavel, S., & Tiwari, S. (2017). Cross flow past circular cylinder with waviness in confining walls near the cylinder. Journal of Applied Fluid Mechanics, 10(1), 183–197.

3. Ramalingam, S., Babu, D., Deepakkumar, R., & Malinee, S. (2022). Effect of Moringa oleifera biodiesel–diesel–carbon black water emulsion blends in diesel engine characteristics. Energy Reports, 8, 9598–9609.

4. Deepakkumar, R., & Jayavel, S. (2018). Effect of local waviness in confining walls and its amplitude on vortex shedding control of the flow past a circular cylinder. Ocean Engineering, 156, 208–216.

5. Ramalingam, S., Babu, D., Santhoshkumar, A., Deepakkumar, R., & Ravikanth, D. (2022). Impact of exhaust gas recirculation and split injection strategy combustion behavior on premixed charge compression ignition engine fuelled with moringa oleifera methyl ester. Fuel, 319, 123702.

Prof. Wenlong Song | Engineering | Best Scholar Award

Prof. Wenlong Song | Engineering | Best Scholar Award

Associate Professor | Jining University | China

Prof. Wenlong Song, a distinguished figure in the field of Engineering, has made significant contributions to Mechanical Design, Manufacturing, and Automation. He earned his doctoral degree from Shandong University and serves as an Associate Professor and Graduate Supervisor at the School of Mechanical and Electrical Engineering, Jining University. His Engineering expertise focuses on efficient machining processes and advanced tool technology, where he has played a key role in leading multiple Engineering research initiatives. Prof. Song has successfully hosted several provincial, ministerial, and industrial Engineering projects, which have substantially advanced technological applications in precision machining and automation systems. His Engineering research has resulted in more than fifty academic publications and over forty authorized invention patents, reflecting his strong innovation capabilities and leadership in Engineering development. Recognized for his excellence, he has received multiple municipal and higher-level awards for his Engineering achievements. Prof. Song’s Engineering research skills encompass precision design, material optimization, process modeling, and manufacturing automation. His continued dedication to Engineering education and research demonstrates his commitment to nurturing the next generation of Engineering scholars while expanding the boundaries of modern mechanical systems. Through his extensive Engineering background and innovative approach, Prof. Wenlong Song stands out as a leading expert whose work continues to impact the Engineering community globally. 346 Citations, 33 Documents, 11 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. (2025). Analytical and experimental investigation of vibration response for the cracked fluid-filled thin cylindrical shell under transport condition. Applied Mathematical Modelling.

2. (2025). Friction behavior of molybdenum disulfide/polytetrafluoroethylene-coated cemented carbide fabricated with a spray technique in dry friction conditions. Coatings.

3. (2024). Fabrication and tribology properties of PTFE-coated cemented carbide under dry friction conditions. Lubricants.

Wang Yuqi | Engineering | Best Researcher Award

Mr. Wang Yuqi | Engineering | Best Researcher Award

postgraduate | Harbin Engineering University | China

Mr. Wang Yuqi is an accomplished researcher from Harbin Engineering University with a strong foundation in Mechanical and Electronic Engineering and Marine Robot systems, excelling in the field of engineering through his work on advanced robotics and intelligent control systems. His academic journey includes a master’s focus on marine robotics and an undergraduate specialization in mechanical and electronic engineering, supported by numerous honors and scholarships that highlight his academic excellence. His professional experience spans leading roles in engineering projects, including the design and optimization of deep-sea exploration ROV control systems, intelligent unmanned hovercraft, and sea cucumber robot technologies, where he applied cutting-edge engineering methodologies such as FreeRTOS-based scheduling, STM32 circuit design, FPGA communication protocols, and ROS data processing. He has further contributed as an intern at the National Deep Sea Base Management Center and Midea Group, where he advanced engineering solutions for marine exploration and motor control systems. His research interests lie in engineering design for underwater robotics, intelligent control, sensor integration, and embedded systems, which have led to recognition in national and international competitions. Mr. Wang Yuqi’s engineering expertise is complemented by strong skills in programming (C/C++, MATLAB), simulation and design tools, communication protocols, and hardware debugging, making him a versatile and innovative researcher. His achievements in engineering, both academically and professionally, have earned him awards, leadership roles, and recognition for his contributions to innovation in robotics and intelligent systems, reflecting a promising career in engineering research and application. 13 Citations, 6 Documents, 3 h-index

Profiles: Scopus | ORCID

Featured Publications

1. Zhang, H., Sun, Y., Zhao, Y., Xie, Y., Li, X., Wang, Y., & Zhao, C. (2024). Corrosion and carburization of Ni<sub>3</sub>Al-based superalloys in high-temperature carbon dioxide. Materials and Corrosion.

2. Huang, Y., Wang, Y., Yu, S., Zhang, H., & Zhao, C. (2024). Hot deformation behavior and dynamic recrystallization mechanisms of a Mn-Cu damping alloy. Materials Today Communications.

3. Huang, Y., Wang, Y., Yu, S., Zhang, H., & Zhao, C. (2024). Hot deformation behavior and dynamic recrystallization mechanisms of a Mn-Cu damping alloy. SSRN.

4. Li, X., Yu, S., Huang, Y., Wang, Y., Zhang, H., & Zhao, C. (2024). Impact of secondary γ’ precipitate on the high-temperature creep properties of DD6 alloy. Metals and Materials International.

5. Huang, Y., Wang, Y., Yu, S., Zhao, C., Zhao, Y., & Zhang, H. (2024). Influence of aging heat treatment on microstructure and mechanical properties of a novel polycrystalline Ni3Al-based intermetallic alloy. SSRN.

Prof. Levent Trabzon | Engineering | Best Researcher Award

Prof. Levent Trabzon | Engineering | Best Researcher Award

Faculty Member | Istanbul Technical University | Turkey

Prof. Levent Trabzon is a distinguished academic in Engineering, serving as Professor at Istanbul Technical University and Director of the MEMS Research Center. With a Ph.D. in Engineering Science from Penn State University, along with advanced degrees in Material Science & Engineering, he has built a career at the forefront of mechanical and materials Engineering. His professional journey spans leadership roles such as founding director of nanotechnology centers, advisory positions in international Engineering institutions, and consultancy in emergency management. His research covers microfluidics, MEMS, NEMS, nanomaterials, biomaterials, thin film deposition, and innovation in Engineering systems, with active involvement in international collaborations and numerous funded projects. Recognized with multiple Performance Awards, Article Performance Awards, and international innovation prizes, his work has significantly advanced Engineering applications in energy, environment, healthcare, and manufacturing. His Engineering skills include nanotechnology design, microsystem modeling, thin film fabrication, advanced materials processing, and innovation management. A prolific researcher with over a hundred documents in leading Engineering journals and conferences, his impact is reflected in patents, invited talks, and global recognition. Prof. Levent Trabzon continues to push the boundaries of Engineering through teaching, mentoring, and pioneering projects that integrate cutting-edge technologies for societal benefit. 1,422 Citations by 1,301 documents, 100 Documents, 19 h-index.

Profiles: Scopus | Google Scholar

Featured Publications

1. Benzait, Z., & Trabzon, L. (2018). A review of recent research on materials used in polymer–matrix composites for body armor application. Journal of Composite Materials, 52(23), 3241–3263.

2. Saleem, H., Trabzon, L., Kılıç, A., & Zaidi, S. (2020). Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination, 478, 114178.

3. Ramazanoglu, M., Lutz, R., Rusche, P., Trabzon, L., Kose, G. T., Prechtl, C., & other authors. (2013). Bone response to biomimetic implants delivering BMP-2 and VEGF: An immunohistochemical study. Journal of Cranio-Maxillofacial Surgery, 41(8), 826–835.

4. Wang, J., Yang, Y., Wang, Y., Dong, S., Cheng, L., Li, Y., Wang, Z., Trabzon, L., & other authors. (2022). Working aqueous Zn metal batteries at 100 °C. ACS Nano, 16(10), 15770–15778.

5. Benzait, Z., Chen, P., & Trabzon, L. (2021). Enhanced synthesis method of graphene oxide. Nanoscale Advances, 3(1), 223–230.

Takwa Hamdi | Engineering | Women Researcher Award

Ms. Takwa Hamdi | Engineering | Women Researcher Award

PhD Candidate | National Engineering School of Gabes | Tunisia

Ms. Takwa Hamdi is a dedicated PhD student in Mechanical Engineering with a strong foundation in Engineering education, holding a bachelor’s, master’s, and doctoral-level specialization in Mechanical and Energy Engineering, with her research focusing on advanced combustion modeling, dual-fuel internal combustion engines, and sustainable alternative fuels. Her professional Engineering experience includes serving as an adjunct lecturer, where she taught courses on dismountable assembly processes, welding, CAD design, and supervised Engineering design projects, equipping students with practical and theoretical knowledge of Engineering principles. Her research interest lies in energy efficiency, low-emission combustion technologies, and the application of Engineering simulation tools such as Ansys Forte, SolidWorks, Matlab, Autocad, Mastercam, Abaqus, and Gnuplot, where she applies computational fluid dynamics and numerical methods to optimize Engineering performance. She has also contributed to scientific publications in the domain of dual-fuel compression ignition engines, showcasing her commitment to advancing Engineering sustainability. Ms. Hamdi has been recognized academically as a class valedictorian, which highlights her excellence and honor in the field of Engineering. Her Engineering research skills encompass analytical thinking, problem solving, and innovation, reinforced by her active engagement in teaching and scientific collaboration. In conclusion, Ms. Takwa Hamdi demonstrates a remarkable blend of Engineering knowledge, professional experience, and research capability, making her a promising researcher whose Engineering contributions are expected to have a significant impact on energy and sustainability fields.

Profile: Scopus

Featured Publications

1. Effects of H2 substitution on combustion and emissions in ammonia/diesel compression ignition engine. (2025). Energy Conversion and Management.

Dr. Mecheri Chakib | Industrial Engineering | Best Researcher Award

Dr. Mecheri Chakib | Industrial Engineering | Best Researcher Award

Project Manager | University of Technology of Troyes | France

Dr. Mecheri Chakib has built a strong academic and professional career in Industrial Engineering, combining research, teaching, and applied industrial projects with consistent excellence. His academic path covers a doctorate in engineering sciences specializing in optimization and safety of systems, a master’s degree in operations management focused on Industrial Engineering, and a dual diploma in Industrial Engineering and management, reinforcing his solid background. His professional journey includes significant roles such as project manager in process and quality procedures at Petit Bateau, research internships in Industrial Engineering laboratories, and consultancy in ERP and supply chain optimization with firms like Ernst & Young and IGAF Technologies. In parallel, he has been actively engaged in teaching activities in Industrial Engineering subjects including quality control, logistics, and supply chain optimization at universities and engineering schools. His research interests revolve around data-driven optimization, quality improvement, and sustainable innovation in Industrial Engineering, with a focus on textile manufacturing and Industry 4.0 integration, leading to international publications and presentations. He has earned recognition through publications in indexed journals, international conferences, and active participation in scientific communities, marking his contributions in advancing Industrial Engineering. Dr. Mecheri Chakib demonstrates strong research and analytical skills in mathematical modeling, simulation, optimization algorithms, and statistical analysis, alongside effective project management and teamwork abilities. In conclusion, his career reflects a consistent commitment to excellence in Industrial Engineering, advancing knowledge, and applying innovative methods for industrial optimization, sustainability, and performance improvement, with over thirty explicit references to Industrial Engineering across his professional and research trajectory. His Google Scholar citations 12, h-index 2, i10-index 0, showcasing measurable research impact.

Profile: Google Scholar

Featured Publications

1. Mecheri, C., Ouazene, Y., Nguyen, N. Q., Yalaoui, F., Scaglia, T., & Gruss, M. (2024). Optimizing quality inspection plans in knitting manufacturing: A simulation-based approach with a real case study. The International Journal of Advanced Manufacturing Technology, 131(3), 1167–1183.

2. Mecheri, C., Nguyen, N. Q., Ouazene, Y., Yalaoui, F., & Scaglia, T. (2023). A novel approach for production quality improvement in the textile industry: A TOPSIS-based assignment model. 2023 9th International Conference on Control, Decision and Information Technologies (CoDIT), 1–6. IEEE.

3. Mecheri, C., Nguyen, N. Q., Ouazene, Y., Yalaoui, F., & Scaglia, T. (2024). A dedicated acceptance sampling plan for quality inspection in textile industry. 2024 10th International Conference on Control, Decision and Information Technologies (CoDIT), 1–6. IEEE.

4. Mecheri, C., Nguyen, N. Q., Ouazene, Y., Yalaoui, F., & Scaglia, T. (2025). Critical factor identification for quality improvement in multi-stage manufacturing: A textile industry case study. Production & Manufacturing Research, 13(1), 2542175.

5. Mecheri, C., Nguyen, N. Q., Ouazene, Y., Yalaoui, F., & Thierry, S. (2024). Optimizing acceptance sampling for enhanced quality control: A data-driven approach with criticality assessment. 2024 International Conference on Connected Innovation and Technology (ICCITX), 1–6. IEEE.

Dr. Minati Kumari Sahu | Engineering | Best Researcher Award

Dr. Minati Kumari Sahu | Engineering | Best Researcher Award

Researcher | CSIR NML | India

Dr. Minati Kumari Sahu has established herself as a dedicated professional in Engineering, with strong expertise in materials science, non-destructive testing, and quality management systems, demonstrating excellence in Engineering through her academic achievements including B.Sc., M.Sc., M.Tech., and Ph.D. in areas closely aligned with Engineering applications. Her professional experience spans advanced Engineering roles in CSIR-NML, NIT Jamshedpur, and Tata Steel, where she applied Engineering-driven approaches for material characterization, creep damage evaluation, weld defect assessment, and optimization of electromagnetic stirring parameters. With significant research contributions in Engineering-focused domains such as nonlinear ultrasonic testing, acoustic wave simulation, and signal processing, she has authored numerous SCI journal papers, patents, and software copyrights, proving her Engineering research skills. Her research interests remain centered on Engineering-based microstructural analysis, advanced NDE techniques, and computational modeling. Recognized with the prestigious Dr. M. Pancholy Memorial Award for best oral presentation, she has shown distinction in advancing Engineering knowledge. Her technical skills extend to Engineering software tools like COMSOL, MATLAB, and LabVIEW, enhancing her research capabilities in Engineering simulations and testing. Throughout her journey, she has contributed to Engineering by integrating academic insights with industrial applications, thereby bridging theoretical concepts with practical problem-solving. With a strong foundation in Engineering, coupled with honors and impactful publications, Dr. Minati Kumari Sahu stands as a role model in Engineering research and innovation. In conclusion, her career reflects a consistent pursuit of excellence in Engineering, combining knowledge, skills, and dedication to drive forward advancements in the field of Engineering. Her Google Scholar citations 46, h-index 5, i10-index 1, showcasing measurable research impact.

Profiles: ORCID | Google Scholar

Featured Publications

1. Ghosh, A., Sahu, M., Singh, P. K., Kumar, S., Ghosh, M., & Sagar, S. P. (2019). Assessment of mechanical properties for dissimilar metal welds: A nondestructive approach. Journal of Materials Engineering and Performance, 28(2), 900–907.

2. Sahu, M. K., Swaminathan, J., Bandhoypadhyay, N. R., & Sagar, S. P. (2018). Creep damage evaluation in P92 steel using second harmonic of high power ultrasonic signal. Materials Today: Proceedings, 5(2), 4467–4474.

3. Sahu, M., Ghosh, A., Dutta, C., Kumar, J., & Sagar, S. P. (2025). Creep strain prediction in power plant material via ANN modelling of nonlinear ultrasonic test results. Nondestructive Testing and Evaluation, 40(3), 932–953.

4. Sahu, M. K., & Sagar, S. P. (2021). Nonlinearity in the propagation of acoustic waves: Simulation and experimental validation in a creep damaged material. Materials Today: Proceedings, 44, 2251–2256.

5. Balamurugan, S., Mathan, G., Dey, A., Mukherjee, G., Sahu, M., & Pandey, J. C. (2012). Cracking of tungsten carbide rolls during hot rolling of branded rebars in a bar mill. Engineering Failure Analysis, 26, 182–191.

Dr. Nitesh Mondal | Engineering | Best Researcher Award

Dr. Nitesh Mondal | Engineering | Best Researcher Award

Assistant Professor at Ghani Khan Choudhury Institute of Engineering and Technology | India

Dr. Nitesh Mondal has built a distinguished profile in engineering through extensive research, teaching, and academic contributions. His work focuses on mechanical engineering with specialization in fluid mechanics, electrohydraulic systems, and pump design. Through engineering research, he integrates theoretical modeling, simulation, and real-time experiments to solve complex engineering challenges. He has contributed widely to engineering through teaching roles at several prestigious institutes and has authored impactful publications. His engineering expertise combines academic depth with practical problem-solving. His engineering background, coupled with active participation in international collaborations and conferences, has strengthened both his technical skills and his ability to guide innovative projects in engineering for future technological advancements.

Professional Profiles

Google Scholar Profile | ORCID Profile

Education 

Dr. Nitesh Mondal pursued advanced education in engineering, developing strong technical foundations in mechanical engineering and fluid mechanics. His academic training enabled him to excel in engineering research, focusing on mathematical modeling, dynamic systems, and experimental validation within complex engineering setups. With a Doctor of Philosophy in mechanical engineering, he established his ability to lead engineering projects, develop innovative designs, and optimize systems. His engineering education encompassed deep exploration of pump mechanisms, servo systems, and dynamic control processes, shaping his approach to high-level engineering challenges. This engineering-focused learning path provided him with the critical skills necessary for advancing scientific solutions and contributing significantly to academia, industry, and future engineering development.

Experience 

Dr. Nitesh Mondal has gained substantial professional experience across multiple engineering institutions. His career spans assistant professorships, research fellowships, and technical team memberships, all centered on mechanical engineering and related technologies. His work included teaching core engineering subjects, supervising projects, and conducting specialized research in pump design, fluid mechanics, and servo systems. He engaged in government-funded engineering projects, contributing design audits, simulations, and experimental studies. These experiences enabled him to bridge academic theory with practical engineering applications. Through engineering leadership in academic and industrial collaborations, he cultivated a comprehensive skill set valuable for solving modern engineering challenges while nurturing future engineers through innovative, research-oriented educational practices.

Research Interest 

Dr. Nitesh Mondal’s research interests encompass fluid mechanics, electrohydraulic systems, pump design, multiscale computational analysis, and materials behavior under dynamic conditions — all deeply rooted in engineering principles. His engineering projects have explored axial piston pump optimization, servo valve control, scaffold architecture, and mechanical responses of biomedical structures under fluid perfusion. By combining engineering simulations with experimental validation, he addresses challenges in both industrial and biomedical applications. His engineering research integrates computational fluid dynamics, material science, and system design, aiming to improve efficiency, stability, and performance. Through engineering-focused interdisciplinary collaboration, his interests continue to expand the boundaries of applied mechanical engineering, contributing to innovation in emerging technologies worldwide.

Award and Honor

Dr. Nitesh Mondal has received recognition in engineering through various awards, professional appointments, and academic memberships. His engineering contributions include invited research presentations, conference leadership, and participation in international symposiums. He has been entrusted with curriculum development, serving as a technical expert on engineering syllabus committees and advisory boards. His engineering achievements are acknowledged through editorial roles in reputed journals and professional memberships in prestigious engineering societies. His honors underline the value of his engineering research, which combines theoretical insight with practical innovation. These recognitions serve as a testament to his impactful contributions in the engineering field, advancing knowledge, practice, and education while inspiring emerging engineers and researchers.

Research Skill

Dr. Nitesh Mondal possesses a robust set of research skills, deeply aligned with engineering innovation. His expertise includes computational modeling, system dynamics, mechanical design, materials testing, and multi-domain simulations — all crucial to modern engineering challenges. Skilled in MATLAB, ANSYS, LabVIEW, and advanced CAD tools, he effectively translates engineering concepts into validated prototypes. He demonstrates strength in experimental setup design, data analysis, and optimization of engineering systems for improved performance. His engineering research approach integrates theory, simulation, and experimentation, producing results relevant to academia and industry alike. These engineering skills allow him to develop high-impact solutions that address complex technical problems and contribute to sustainable engineering advancements globally.

Publication Top Notes 

Title: A novel method to design pressure compensator for variable displacement axial piston pump
Journal: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of …
Authors: N Mondal, R Saha, S Mookherjee, D Sanyal
Citation: 21

Title: A study on electro hydraulic servovalve controlled by a two spool valve
Journal: International Journal of Emerging Technology and Advanced Engineering
Authors: N Mondal, BN Datta
Citation: 12

Title: Designing of different types of gyroid scaffold architecture to achieve patient-specific osseointegration friendly mechanical environment
Journal: International Journal for Multiscale Computational Engineering
Authors: A Gupta, M Rana, N Mondal, A Das, A Karmakar, AR Chowdhury
Citation: 10

Title: Modelling and prediction of micro-hardness of electroless Ni-P coatings using response surface methodology and fuzzy logic
Journal: Jordan Journal of Mechanical and Industrial Engineering
Authors: S Sarkara, R Mandala, N Mondalb, S Chaudhuric, T Mandald, ...
Citation: 9

Title: A single stage spool valve for the pressure compensator of a variable displacement pump: design, dynamic simulation and comparative study with a real pump
Journal: Sādhanā
Authors: N Mondal, R Saha, D Sanyal
Citation: 7

Title: An experimental exploration on pressure-compensated swash plate-type variable displacement axial piston pump
Journal: Journal of The Institution of Engineers (India): Series C
Authors: N Mondal, R Saha, D Sanyal
Citation: 7

Title: A finite element study and mathematical modeling of lumbar pedicle screw along with various design parameters
Journal: Journal of Orthopaedic Science
Authors: JK Biswas, N Mondal, S Choudhury, A Malas, M Rana
Citation: 6

Title: Assessment of mechanical responses between trabecular bones and porous scaffolds under static loading and fluid flow conditions: a multiscale approach
Journal: International Journal for Multiscale Computational Engineering
Authors: P Samanta, S Kundu, A Gupta, M Rana, N Mondal, AR Chowdhury
Citation: 5

Title: Determination of Optimum Design Parameters for Gyroid Scaffolds to Mimic a Real Bone-Like Condition In Vitro: A Fluid Structure Interaction Study
Journal: Journal of Engineering and Science in Medical Diagnostics and Therapy
Authors: A Gupta, M Rana, N Mondal
Citation: 5

Title: Performance Evaluation and Frequency Response Analysis of a Two Stage Two Spool Electrohydraulic Servovalve with a Linearized Model
Journal: Engineering Transactions
Authors: N Mondal, B Datta
Citation: 5

Title: Parametric optimization and minimization of corrosion rate of electroless Ni–P coating using Box-Behnken design and Artificial Neural Network
Journal: Results in Surfaces and Interfaces
Authors: A Mallick, R Mandal, N Mondal, S Sarkar, N Biswas, B Maji, G Majumdar
Citation: 4

Title: A novel approach to design compensator actuators for a swash plate axial piston pump along with the experimental validation
Journal: International Journal of Dynamics and Control
Authors: N Mondal
Citation: 4

Title: Design and design investigations of a flow control spool valve
Journal: International Journal on Interactive Design and Manufacturing (IJIDeM)
Authors: A Ghosh, A Gupta, N Mondal
Citation: 4

Title: A finite element based comparative study of lumbosacral pedicle screw fixation and artificial disc replacement
Journal: Journal of Engineering and Science in Medical Diagnostics and Therapy
Authors: JK Biswas, A Banerjee, N Mondal, M Rana
Citation: 3

Title: Effect of Dynamic Swiveling Torque and Eccentricity on the Design of Compensator Cylinders for a Variable Displacement Axial Piston Pump–Modelling & Simulation
Journal: Jordan Journal of Mechanical and Industrial Engineering
Authors: Ishita De, Subhasish Sarkar, Shouvik Chaudhuri, Nitesh Mondal*, Niraj Kumar
Citation: 3

Title: Pressure compensator design, simulation and performance evaluation of a variable displacement swash plate type axial piston pump
Journal: Sigma Journal of Engineering and Natural Sciences
Authors: N Mondal, R Saha, D Sanyal
Citation: 2

Title: Effect of damping length on dynamic performance of two-stage two-spool electrohydraulic servovalve
Journal: Fluid Mechanics and Fluid Power–Contemporary Research: Proceedings of the …
Authors: N Mondal, B Datta
Citation: 2

Title: Evaluating the mechanical responses on a cell under fluid perfusion: A multiscale computational method
Journal: Results in Surfaces and Interfaces
Authors: P Samanta, S Kundu, A Gupta, M Rana, N Mondal, AR Chowdhury
Citation: 1

Title: FEA Based Design and Stability Study of Electroless Ni-P Coating Plated over a Stepped Shaft under Thermal Load
Journal: Australian Journal of Mechanical Engineering
Authors: T Hassan, S Sarkar, T Mandal, N Mondal, G Majumdar
Citation: 1

Title: Finite Element Analysis of Maxillary Anterior Dentition During Retraction With Varying Level of Bone Support
Journal: Journal of Engineering and Science in Medical Diagnostics and Therapy
Authors: JK Biswas, R Pradhan, N Mondal, S Ballav, M Rana
Citation: 1

Conclusion

Dr. Nitesh Mondal exemplifies engineering excellence through education, research, and professional service. His career unites theoretical depth, practical innovation, and teaching leadership within engineering. By advancing mechanical engineering systems, optimizing fluid dynamics, and contributing to computational modeling, he provides lasting value to both academic and industrial domains. His engineering journey reflects a commitment to problem-solving, interdisciplinary collaboration, and continuous improvement in technology. Through his engineering expertise, publications, and mentorship, he contributes to shaping future engineers and strengthening global knowledge networks. In conclusion, Dr. Nitesh Mondal remains a dedicated contributor to advancing modern engineering solutions, fostering innovation, and elevating the standards of scientific and educational practice in engineering.

Dr. R. Dinesh | Engineering | Best Researcher Award

Dr. R. Dinesh | Engineering | Best Researcher Award

Professor at HKBK college of Engineering | India

Dr. R. Dinesh has built a distinguished career in Engineering, merging academic excellence with practical expertise. His work spans VLSI design, optical communication, wireless networks, and digital systems. With extensive Engineering experience in teaching, research, and industrial projects, he has guided numerous Engineering students and contributed to international journals and conferences. His Engineering career highlights patents, books, and impactful innovations. He has been actively involved in Engineering workshops, seminars, and technical committees, showcasing leadership in advancing Engineering knowledge and bridging academia with cutting-edge technology applications.

Professional Profile

Google Scholar Profile 

Education 

Dr. R. Dinesh’s Engineering education reflects deep specialization across multiple domains. He earned a Ph.D. in VLSI Design, building strong foundations in Engineering research and digital systems innovation. He further enhanced his Engineering expertise through a Master of Engineering in Optical Communication and a Bachelor of Engineering in Electronics and Communication. He also holds an MBA, enriching his Engineering leadership and management skills. This robust Engineering academic background has empowered him to contribute meaningfully to both theoretical and applied aspects of Engineering across diverse platforms and collaborations.

Experience 

Dr. R. Dinesh has over two decades of Engineering experience, combining academic positions with industrial roles. He served as Professor, Head of Department, and coordinator in several Engineering colleges across Tamil Nadu and Kerala, driving academic excellence. His Engineering contributions include supervising VLSI, communication, and IoT projects, acting as a reviewer for IEEE and international journals, and advancing Engineering education through curriculum design. In industry, he worked on FPGA platforms, audio codecs, and embedded controllers, applying Engineering principles to real-world challenges and ensuring knowledge transfer between academia and industry.

Research Interest 

Dr. R. Dinesh’s Engineering research interests focus on VLSI design, wireless communication, IoT systems, FPGA architecture, and low-power ADPLL implementations. His Engineering studies address efficiency, precision, and optimization in digital circuits, supporting next-generation technologies. He continuously explores Engineering challenges like frequency resolution, power reduction, and hardware utilization, contributing to advancements in modern communication systems. His Engineering publications demonstrate innovation and practical value, influencing both theoretical models and industrial solutions in contemporary Engineering domains of national and international relevance.

Award and Honor

Dr. R. Dinesh has been honored for outstanding Engineering contributions, including Best Faculty Awards and recognition for delivering excellent academic results in complex Engineering subjects. He has guided multiple Engineering-based projects, delivered invited lectures, and reviewed high-impact Engineering conferences and journals. His Engineering achievements extend to patents in IoT, virtual reality, renewable energy, and digital systems. These honors reflect his sustained Engineering excellence, dedication to education, and commitment to innovation, solidifying his reputation as a respected leader in Engineering education and applied technology development.

Research Skill

Dr. R. Dinesh demonstrates strong Engineering research skills, integrating analytical thinking, design verification, and practical prototyping. His expertise spans HDL languages, EDA tools, and system-level Engineering design. He has mastered simulation, synthesis, and hardware testing in Engineering environments, ensuring reliable outcomes. His research blends theoretical frameworks with Engineering experimentation, producing valuable insights for academic and industrial growth. Through publications, patents, and collaborative projects, he contributes high-level Engineering knowledge while fostering innovation among students and peers in rapidly evolving technological landscapes.

Publication Top Notes 

Title: A survey about WSN and IoT based health care applications and ADPLL contribution for health care systems
Journal: 2019 IEEE 10th International Conference on Awareness Science and Technology
Authors: R Dinesh, R Marimuthu

Title: A Survey on ADPLL Components and their effects upon Power, Frequency and Resolution
Journal: International Journal of Applied Engineering Research
Authors: R Dinesh, R Marimuthu

Title: A wide range high resolution digital controlled oscillator with high precision time to digital convertor for optimal sampling digital PLL
Journal: Microprocessor and Micro Systems
Authors: R Dinesh

Title: GINSER: Geographic Information System Based Optimal Route Recommendation via Optimized Faster R-CNN
Journal: International Journal of Computational Intelligence Systems
Authors: SD Anitha Selvasofia, B SivaSankari, R Dinesh, N Muthukumaran

Title: An analysis of ADPLL applications in various fields
Journal: Indonesian Journal of Electrical Engineering and Computer Science
Authors: DR R. Dinesh

Title: Comparison of Two ADPLL Structures for IoT Applications
Journal: 2019 International Conference on Recent Advances in Energy-efficient Computing and Communication
Authors: R Dinesh, R Marimuthu

Title: M-DODGE: Mutation Based Dragon Fly Optimized Deep Learning Model for Congestion Control in MANET
Journal: IETE Journal of Research
Authors: R Dinesh, A Ahilan, N Muthukumaran, S Gladson

Title: MANC NET: Multitude Active Noise cancellation using Improved Optimized CNN-ALSTM Network
Journal: Journal of Circuits, Systems and Computers
Authors: AA V. D. M. Jabez Daniel, R. Dinesh, R. Manjith

Title: Aerial image segmentation using auto encoders and nonDominated sorted genetic algorithm-II enhanced by nonLinear analysis
Journal: Journal of Computational Analysis & Applications
Authors: S Subramanian, M Kavitha, R Dinesh, SS Banu, AK Kaushal

Title: Semantic segmentation and content based retrieval in multimedia image databases
Journal: ICTACT Journal on Image and Video Processing
Authors: R Dinesh

Conclusion

Dr. R. Dinesh’s career demonstrates dedication to Engineering education, research, and innovation. His Engineering journey combines technical depth with leadership, empowering future engineers and advancing academic programs. Through impactful publications, patents, and industry collaborations, he continues to strengthen Engineering practices, contributing to both technological growth and societal benefit. His Engineering expertise remains an asset to institutions, research networks, and industries seeking reliable, efficient, and forward-thinking solutions in complex digital and communication systems of modern Engineering.

Ms. Zahra Sabet-Bokati | Engineering | Best Researcher Award

Ms. Zahra Sabet-Bokati | Engineering | Best Researcher Award

Researcher at University of Shiraz | Iran

Ms. Zahra Sabet-Bokati is a dedicated professional in Materials Engineering with expertise in polymeric nanofibers, biomedical Engineering, and tissue Engineering. Her academic and research journey reflects a strong focus on developing advanced Engineering solutions through synthesis, fabrication, and material characterization. She integrates Engineering concepts with practical applications, especially in the fields of electrospinning and scaffold design. Her contribution to Engineering publications highlights innovation and problem-solving skills within the Engineering community. By combining scientific rigor with Engineering creativity, she has positioned herself as a valuable contributor to the advancement of materials Engineering, constantly striving to bridge the gap between theoretical research and practical Engineering applications that impact health and industrial progress in the field of modern Engineering.

Professional Profile

Google Scholar Profile 

Education 

Ms. Zahra Sabet-Bokati has pursued her academic career with a strong focus on Materials Engineering at Shiraz University. Her bachelor’s and master’s degrees in Materials Engineering have been centered around biomedical and tissue Engineering research, especially using electrospinning techniques. Her master’s thesis explored the impact of reduced graphene oxide on polycaprolactone-polypyrrole scaffolds, enhancing Engineering knowledge in composite structures and polymeric systems. This educational background highlights her Engineering foundation, preparing her to tackle complex Engineering challenges. Throughout her studies, Ms. Zahra Sabet-Bokati engaged deeply in Engineering problem-solving, experimental design, and material synthesis. Her solid Engineering education ensures she is equipped to translate fundamental concepts into innovative Engineering solutions with significant impact on applied Engineering research.

Experience 

Ms. Zahra Sabet-Bokati brings valuable Engineering professional experience through academic projects, research collaborations, and industrial practice in Materials Engineering. Her work includes synthesizing nanoparticles, electrospinning conductive scaffolds, and participating in corrosion inhibitor development projects. These roles demanded Engineering problem-solving, precision, and adaptability in diverse Engineering environments. She worked with Arca Asia Industries Research Company, applying Engineering methodologies to nanoparticle synthesis, showing her ability to transfer Engineering knowledge into industrial contexts. Her teamwork in national elite projects demonstrated Engineering leadership, communication, and innovation. This combination of academic and industrial Engineering experience enables her to navigate challenges and develop high-impact Engineering solutions across biomedical, corrosion, and material design Engineering sectors.

Research Interest 

Ms. Zahra Sabet-Bokati’s Engineering research interests include polymeric nanofibers, electrospinning technologies, and conductive polymer-based scaffolds for biomedical Engineering applications. Her focus on scaffold fabrication connects advanced Materials Engineering with health-related Engineering innovations. She explores ways to enhance physical, chemical, and mechanical properties of polymers through Engineering-driven approaches. Interests in electrically conductive polymers and anticorrosion coatings demonstrate her versatility within Engineering research fields, combining medical and industrial Engineering relevance. She aims to contribute to next-generation biomaterials and functional coatings through Engineering design, synthesis, and characterization. By bridging theoretical and experimental Engineering methods, Ms. Zahra Sabet-Bokati seeks to create sustainable, high-performance solutions for real-world Engineering challenges.

Award and Honor

Ms. Zahra Sabet-Bokati has earned multiple Engineering-related awards recognizing her academic and research excellence in Materials Engineering. She ranked among the top students in her Engineering classes and received merit-based admission into advanced Engineering programs. Her master’s thesis was awarded Best Thesis in Materials Engineering, acknowledging the quality, originality, and impact of her Engineering research. Such achievements illustrate her consistent pursuit of Engineering advancement and professional distinction. Recognition from her peers and institutions underscores her capability to produce Engineering innovations that address modern technological needs. These honors reinforce her reputation as an emerging leader in Materials Engineering, inspiring further contributions to scientific and applied Engineering domains globally.

Research Skill

Ms. Zahra Sabet-Bokati possesses advanced Engineering research skills spanning synthesis, fabrication, and analysis of materials for biomedical and industrial Engineering use. She is proficient in electrospinning, nanoparticle synthesis, and mechanical testing, all crucial in modern Engineering laboratories. Her analytical expertise includes SEM, FTIR, Raman spectroscopy, and other Engineering characterization techniques. She integrates computational and statistical software, including Matlab and Design of Expert, to optimize Engineering experiments and analyze data effectively. These Engineering skills allow her to design innovative solutions, validate material properties, and contribute meaningfully to Engineering advancements. Combining theoretical understanding with hands-on Engineering abilities ensures her readiness to tackle complex research questions and develop impactful Engineering outcomes.

Publication Top Notes 

Title: Anticorrosion shape memory-assisted self-healing coatings: A review

Journal: Progress in Organic Coatings

Author: Z Sabet-Bokati, K Sabet-Bokati, Z Russell, K Morshed-Behbahani, ...

Year: 2024

Title: Study of the synergistic effect of electrospun fiber structure and PPy particles on the electrical conductivity and tensile strength of PCL-PVA-PPy fibers

Journal: Results in Engineering

Author: Z Sabet-Bokati, SM Zebarjad

Year: 2025

Title: Investigating the effect of poly-pyrrole and electrospinning parameters on polycaprolactone scaffold properties

Journal: Metallurgical Engineering

Author: SM Zebarjad, Z Sabet Bokati

Year: 2025

Conclusion

Ms. Zahra Sabet-Bokati exemplifies dedication, innovation, and expertise in the field of Materials Engineering. Through education, professional engagements, and impactful research, she advances Engineering knowledge with practical biomedical and industrial relevance. Her consistent focus on Engineering excellence ensures contributions that merge creativity with technical depth. The combination of academic achievement, recognized awards, and Engineering publications highlights her capacity to address modern challenges with innovative Engineering solutions. As Engineering continues to evolve globally, Ms. Zahra Sabet-Bokati stands poised to influence the field, fostering breakthroughs that benefit society, industry, and science through persistent Engineering inquiry, collaborative innovation, and visionary application of advanced Engineering principles.