Kriti Ranjan Sahu | Material Science | Best Researcher Award

Assist. Prof. Dr .Kriti Ranjan Sahu | Material Science | Best Researcher Award

Assistant Professor, Bhatter College, Dantan(Autonomous), India

Dr. Kriti Ranjan Sahu is an accomplished physicist and academic leader with a track record of novel research in piezoelectricity, superconductivity, optical materials, and bio-physics. His multifaceted experience, spanning material synthesis to device application, reflects deep scientific rigor and societal relevance. His innovations have the potential for technological translation in energy, defense, and industrial applications. Furthermore, his leadership role as HOD and teaching legacy contribute to knowledge dissemination.

Professional Profile

🎓 Education Background

Dr. Kriti Ranjan Sahu earned his Ph.D. in Physics from Jadavpur University in January 2016 under the supervision of Prof. Dr. Udayan De, a former senior scientist at VECC, Kolkata. His doctoral thesis, titled “Study of some piezoelectric and other oxides and of their polymeric composites for applications,” focused on developing advanced functional materials. He completed his M.Sc. in Physics from G.G.D. University, Bilaspur in 2004 with a commendable score of 64.39%. His foundational studies include a B.Sc. in Physics from P.K. College, Contai under Vidyasagar University, and school-level education from Tickrapara Ambikyamoye High School in West Bengal.

🧑‍🏫 Teaching & Academic Experience

Dr. Sahu currently serves as the Assistant Professor and Head of the Department of Physics at Bhatter College, Dantan (Autonomous), Paschim Medinipur, West Bengal, a position he has held since December 11, 2019. Previously, he served as a Government-approved part-time teacher (now SACT) in the Department of Physics at Egra S.S.B. College, from August 2005 to December 2019, where he also led the department. His extensive teaching experience spans undergraduate and postgraduate levels, reflecting his commitment to physics education over two decades.

🧪 Research Expertise and Technical Skills

Dr. Kriti Ranjan Sahu possesses extensive expertise in experimental condensed matter physics, with a strong focus on material synthesis, characterization, and device applications. His core competencies include the preparation of advanced materials such as piezoelectric ceramics, optical glasses, EMI shielding composites, and high-temperature superconductors. He is skilled in a wide range of characterization techniques including X-ray diffraction (XRD), UV-Visible spectroscopy, FTIR, SEM, TEM, Raman spectroscopy, fluorescence analysis, and thermal techniques like DSC, DTA, and TGA. Dr. Sahu has conducted low-temperature resistivity and magnetization measurements, dielectric property analysis, and electrical conductivity studies. His technical abilities extend to refractive index measurement using laser-based methods, as well as organic solar cell fabrication and testing. He has also worked with gamma and ion irradiation processes.

🏆 Awards & Recognitions

While the list of formal recognitions is still growing, Dr. Sahu’s innovations have earned academic distinction and publication in reputed journals, particularly in material physics and applied sciences. His interdisciplinary work has contributed both to fundamental physics and real-world applications, including imaging sensors for nuclear reactors and cost-effective educational lab setups.

Publication Top Notes

  • Title: Ferroelectric materials for high temperature piezoelectric applications
    Authors: U De, KR Sahu, A De
    Journal: Solid State Phenomena, Vol. 232, pp. 235–278
    Citations: 54
    Year: 2015

  • Title: Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant
    Authors: Anup Kumar Bhunia, Dheeman Mondal, Kriti Ranjan Sahu, Amal Kumar Mondal
    Journal: Carbohydrate Polymer Technologies and Applications, Vol. 5, 100286
    Citations: 29
    Year: 2023

  • Title: Structural characterization of orthorhombic and rhombohedral lead meta-niobate samples
    Authors: KR Chakraborty, KR Sahu, A De, U De
    Journal: Integrated Ferroelectrics, Vol. 120(1), pp. 102–113
    Citations: 29
    Year: 2010

  • Title: Thermal characterization of piezoelectric and non-piezoelectric Lead Meta-Niobate
    Authors: KR Sahu, U De
    Journal: Thermochimica Acta, Vol. 490(1–2), pp. 75–77
    Citations: 22
    Year: 2009

  • Title: Spectroscopic Investigation of Degradation Reaction Mechanism in γ-Rays Irradiation of HDPE
    Authors: SG Prasad, C Lal, KR Sahu, A Saha, U De
    Journal: Biointerface Research in Applied Chemistry, Vol. 11(2), pp. 9405–9419
    Citations: 19
    Year: 2021

  • Title: Dielectric Properties of PbNb₂O₆ up to 700°C from Impedance Spectroscopy
    Authors: KR Sahu, U De
    Journal: Journal of Materials, Vol. 2013(1), Article ID 702946
    Citations: 19
    Year: 2013

  • Title: Role of Nb₂O₅ phase in the formation of piezoelectric PbNb₂O₆
    Authors: KR Sahu, U De
    Journal: Thermochimica Acta, Vol. 589, pp. 25–30
    Citations: 17
    Year: 2014

  • Title: Dielectric and thermal investigations on PbNb₂O₆ in pure piezoelectric phase and pure non-piezoelectric phase
    Authors: U De, KR Sahu, KR Chakraborty, SK Pratihar
    Journal: Integrated Ferroelectrics, Vol. 119(1), pp. 96–109
    Citations: 16
    Year: 2010

  • Title: Synthesis and study of electroactive nanoparticles and their polymer composites for novel applications
    Authors: N Dutta Gupta, KR Sahu, I Das, A De, U De
    Journal: Indian Journal of Physics, Vol. 84, pp. 1413–1419
    Citations: 14
    Year: 2010

  • Title: Polymer Composites for Flexible Electromagnetic Shields
    Authors: KR Sahu, U De
    Journal: Macromolecular Symposia: Advance Science News, Vol. 381(1), Article 1800097
    Citations: 9
    Year: 2018

Conclusion 

Dr. Kriti Ranjan Sahu is highly suitable for the Best Researcher Award. His scientific excellence, interdisciplinary work, academic leadership, and innovation in material science align well with the award’s objectives. He represents a model researcher whose work pushes the boundaries of applied physics while contributing meaningfully to science, education, and industry. With minor steps to globalize his efforts and protect intellectual property, his profile would reach even greater heights.

Jing Zhang | Materials Science | Best Researcher Award

Ms. Jing Zhang | Materials Science | Best Researcher Award

Lecturer at Shanxi Normal University, China

Jing Zhang is a dedicated researcher and lecturer at Shanxi Normal University, specializing in organic electronics and molecular materials. She earned her Ph.D. in Physical Chemistry from the Institute of Chemistry, Chinese Academy of Sciences (2018-2022) under the mentorship of Prof. Lang Jiang. She previously completed her Master’s in Physics at Hunan University (2015-2018) and her Bachelor’s in Physics. Her research focuses on organic semiconductor materials, neuromorphic devices, and molecular doping. She has led multiple funded research projects and published extensively in high-impact journals, contributing significantly to advanced materials science and device engineering.

Professional Profile:

Orcid

Scopus

Education & Experience 📚🔬

  • Ph.D. in Physical Chemistry (2018-2022) 🏛️
    Institute of Chemistry, Chinese Academy of Sciences

    • Focus: Organic semiconductors and neuromorphic devices

    • Advisor: Prof. Lang Jiang 🎖️

  • Master’s in Physics (2015-2018) 🏛️
    Hunan University

    • Specialization: Semiconductor physics and nanomaterials

    • Advisor: Prof. Guifang Huang 📡

  • Lecturer (2022-Present) 🎓
    Shanxi Normal University, College of Chemistry and Materials Science

    • Research on organic electrochemical transistors & bioelectronics

    • Development of 2D molecular crystals & neuromorphic computing devices 🧠

  • Researcher (2016-2022) 🔬
    Institute of Chemistry, Chinese Academy of Sciences

    • Investigated porphyrin-based organic transistors & nanomaterials

    • Advanced graphene-like nanostructures for functional devices

Professional Development 📈💡

Jing Zhang has actively contributed to organic semiconductor research, pioneering advancements in molecular doping, neuromorphic devices, and biosensors. As the principal investigator of multiple projects funded by Shanxi Province and National Research Foundations, she has led breakthrough studies in organic single-crystal transistors and 2D molecular materials. Her expertise spans device fabrication, charge transport mechanisms, and nanomaterials for energy applications. Her research has been published in top journals like Advanced Materials, JACS, and ACS Materials Letters, reflecting her influence in next-generation electronics and bio-integrated systems. She also mentors students, fostering innovation in organic optoelectronics and flexible electronics.

Research Focus 🧪⚛️

Jing Zhang’s research is centered on organic electronics, particularly semiconductor devices and molecular materials. She explores:

  • Organic Electrochemical Transistors (OECTs) for bioelectronic sensing 🏥

  • Porphyrin-Based Organic Semiconductors for neuromorphic computing 🧠💡

  • Molecular Doping Techniques for high-performance organic transistors ⚙️

  • Two-Dimensional (2D) Molecular Crystals for next-gen optoelectronic applications 🌟

  • Functional Nanomaterials for sustainable energy conversion and storage ⚡🔋

Her innovative work bridges chemistry, materials science, and applied physics, pushing the limits of organic and molecular electronics for real-world applications.

Awards & Honors 🏆🎖️

  • Chinese Academy of Sciences Youth Science Award – Excellence Prize (2020-2021) 🏅
    Recognized for outstanding contributions to organic semiconductor research

  • University of Chinese Academy of Sciences “Three-Good” Student Award (2020) 🎓
    Honored for academic excellence and research achievements

  • Marie Curie Seal of Excellence – Aalborg University (2024) 🌍✨
    Awarded for outstanding research contributions in materials science and electronics

Publication Top Notes

  1. “Adhered-3D Paper Microfluidic Analytical Device Based on Oxidase-Mimicking Activity of Co-Doped Carbon Dots Nanozyme for Point-of-Care Testing of Alkaline Phosphatase”

    • Journal: Analytica Chimica Acta

    • Publication Date: December 2024

    • DOI: 10.1016/j.aca.2024.343378

    • Summary: This study introduces a three-dimensional paper-based microfluidic analytical device (3D-μPAD) leveraging the oxidase-mimicking activity of cobalt-doped carbon dots (Co-CDs) nanozyme. The device is designed for point-of-care testing of alkaline phosphatase (ALP), an important biomarker. The Co-CDs nanozyme catalyzes the oxidation of colorimetric substrates, enabling the visual detection of ALP levels. The 3D-μPAD offers a simple, cost-effective, and efficient method for ALP detection, suitable for clinical diagnostics.

  2. “Solution-Processed Monolayer Molecular Crystals: From Precise Preparation to Advanced Applications”

    • Journal: Precision Chemistry

    • Publication Date: August 26, 2024

    • DOI: 10.1021/prechem.3c00124

    • Summary: This article reviews the advancements in the preparation and application of solution-processed monolayer molecular crystals. It discusses precise fabrication techniques and explores their potential in various advanced applications, including electronics and optoelectronics. The study emphasizes the significance of molecular orientation and crystallinity in determining the performance of these materials.

  3. “Low Contact Resistance Organic Single‐Crystal Transistors with Band‐Like Transport Based on 2,6‐Bis‐Phenylethynyl‐Anthracene”

    • Journal: Advanced ScienceJing 

    • Publication Date: March 18, 2024

    • DOI: 10.1002/advs.202400112

    • Summary: This research presents the development of organic single-crystal transistors utilizing 2,6-bis-phenylethynyl-anthracene. The study focuses on achieving low contact resistance and demonstrates band-like transport behavior, which is crucial for high-performance organic electronic devices. The findings contribute to the understanding and improvement of charge transport in organic semiconductors.

  4. “Cation Etching-Induced Deep Self-Reconstruction to Form a Polycrystalline Structure for Efficient Electrochemical Water Oxidation”

    • Journal: Chemical Communications

    • Publication Date: 2024

    • DOI: 10.1039/d4cc02009j

    • Summary: This study explores a cation etching-induced self-reconstruction process that leads to the formation of a polycrystalline structure, enhancing the efficiency of electrochemical water oxidation. The research provides insights into material design strategies for developing high-performance catalysts in water-splitting applications.

  5. “Diazulenorubicene as a Non‐Benzenoid Isomer of Peri‐Tetracene with Two Sets of 5/7/5 Membered Rings Showing Good Semiconducting Properties”

    • Journal: Angewandte Chemie International Edition

    • Publication Date: September 25, 2023

    • DOI: 10.1002/anie.202304632

    • Summary: This research introduces diazulenorubicene, a non-benzenoid isomer of peri-tetracene featuring two sets of 5/7/5 membered rings. The study highlights its good semiconducting properties, suggesting potential applications in organic electronics. The unique structural attributes of diazulenorubicene contribute to its electronic characteristics.

Conclusion

Jing Zhang’s track record in high-impact research, leadership in project execution, and innovative contributions to organic electronics and energy materials make her a strong candidate for the Best Researcher Award. Her work has not only advanced fundamental understanding but also has potential applications in next-generation electronic and energy devices.

Sijo A K | Materials Science | Best Researcher Award

Dr. Sijo A K | Materials Science | Best Researcher Award

Assistant Professor at Mary Matha Arts and Science College Wayanad, India

Dr. sijo a. k. is a dedicated researcher and academician affiliated with Mary Matha Arts and Science College, Wayanad. With a strong background in materials science, he has contributed significantly to nanomaterials, ferrites, and thin-film research. His expertise spans structural, optical, magnetic, and electrical properties of advanced materials. With an H-index of 9 and 170 citations, his work is widely recognized in reputed journals like Physica Scripta, Applied Nanoscience, and Journal of Magnetism and Magnetic Materials. Passionate about solar energy, nanotechnology, and spinel materials, he continues to drive innovation in materials research. 🔬📚

Professional Profile:

Orcid

Education & Experience

🎓 Education:

  • Ph.D. in Materials Science 🏅

  • Master’s Degree in Physics 🧑‍🏫

  • Bachelor’s Degree in Physics 📖

👨‍🏫 Experience:

  • Assistant Professor, Mary Matha Arts and Science College, Wayanad 📚

  • Published 24+ research papers in high-impact journals 📑

  • Expertise in nanotechnology, ferrites, thin films, and solar energy materials 🌞🔬

  • Active reviewer for leading scientific journals 📝

Professional Development

🚀 Dr. sijo a. k. has continuously advanced his expertise through collaborative research, academic mentoring, and scientific publishing. His work focuses on advanced nanomaterials, thin films, and energy-efficient materials, pushing the boundaries of applied physics and material science. He has reviewed research for multiple high-impact journals and remains actively engaged in scientific conferences, workshops, and symposiums. Through international collaborations, he has co-authored papers with researchers from Ukraine, India, and Europe, contributing to cutting-edge material innovations. His commitment to academic excellence and interdisciplinary research makes him a key figure in modern material science. 🔬🌍

Research Focus

🧪 Dr. sijo a. k.’s research centers on advanced nanomaterials and thin films, with a particular interest in ferrites, spinel materials, and semiconductor applications. His studies explore magnetic, structural, and optical properties to enhance photocatalysis, energy storage, and solar cell efficiency. His contributions to copper tin sulfide (CTS) thin films and ferrite-based nanomaterials aim to develop sustainable, efficient materials for future energy applications. With an interdisciplinary approach, he integrates computational modeling, synthesis techniques, and experimental validation to unlock new possibilities in materials science. 🌍⚡

Awards & Honors

🏅 United Group Research Award for outstanding research contributions 🏆
🔬 Best Paper Awards in international conferences 📜
🌍 Recognized as a leading reviewer for top-tier journals 📝
📚 Highly Cited Researcher in materials science and nanotechnology 🎖
🎓 Ph.D. Fellowship for research in nanomaterials and thin films 🔍

Publication Top Notes

  1. “Impact of Cation Distribution in Shaping the Structural and Magnetic Characteristics of Ni-Cu Ferrite”

    Authors: J. Mazurenko, Sijo A. K., L. Kaykan, J. M. Michalik, Ł. Gondek, E. Szostak, and A. ZywczakX-MOL

    Journal: Physica ScriptaEureka Mag+6ScienceDirect+6ScienceDirect+6

    Publication Date: March 1, 2025

    DOI: 10.1088/1402-4896/adb2c3

    Summary: This study presents the synthesis, characterization, and magnetic properties of Cu₁₋ₓNiₓFe₂O₄ nanocrystalline ferrites (0.0 ≤ x ≤ 1.0) prepared using the sol–gel autocombustion method at neutral pH. The research focuses on how varying the cation distribution between copper and nickel influences the structural and magnetic characteristics of the resulting ferrites.

  2. “Post-Annealing-Induced Enhancement of Structural, Optical and Electrical Properties in Copper Tin Sulphide (CTS) Thin Films”

    Authors: Sijo A. K. and P. Sapna

    Journal: Physica Scripta

    Publication Date: March 1, 2025

    DOI: 10.1088/1402-4896/adb2c5

    Summary: This research investigates the impact of post-annealing on the structural, optical, and electrical properties of Copper Tin Sulfide (CTS) thin films. The CTS thin films were synthesized using the Successive Ionic Layer Adsorption and Reaction (SILAR) method and then annealed at temperatures of 100 °C, 200 °C, and 300 °C. Characterization techniques such as XRD, SEM, FTIR, UV–vis-NIR, and EDAX revealed that increasing the annealing temperature improved crystallinity, optical transmittance, and electrical conductivity. The films exhibited high bandgap energies (3.68–3.90 eV) and strong UV absorption, suggesting potential applications in high-performance optoelectronic devices.

  3. “Copper Precursor-Driven Variations in Structural, Optical and Electrical Properties of SILAR-Deposited CTS Thin Films”

    Authors: Information not available

    Journal: Physica Scripta

    Publication Date: January 1, 2025

    DOI: 10.1088/1402-4896/ada079

    Summary: Specific details about this paper are not available in the provided information.

  4. “Synthesis and Characterization of Copper Ferrite Nanoparticles for Efficient Photocatalytic Degradation of Organic Dyes”

    Authors: Information not available

    Journal: Journal of Nanotechnology

    Publication Date: January 2025

    DOI: 10.1155/jnt/8899491

    Summary: Specific details about this paper are not available in the provided information.

  5. “Enhancing Copper-Tin Sulfide Thin Films with Triethanolamine as a Complexing Agent”

    Authors: Information not available

    Journal: Journal of Molecular StructureScienceDirect+4ScienceDirect+4ScienceDirect+4

    Publication Date: 2025X-MOL+1SpringerLink+1

    DOI: 10.1016/J.MOLSTRUC.2025.141812

    Summary: Specific details about this paper are not available in the provided information.

Conclusion

Dr. Sijo A. K. is an emerging researcher with notable contributions to magnetic materials, nanotechnology, and renewable energy applications. While his H-index and citation count are moderate compared to top-tier researchers, his consistent publishing in high-quality journals and focus on sustainable energy solutions makes him a strong contender for young or mid-career researcher awards. If the award criteria focus on impact, innovation, and sustained contributions, he is a suitable candidate, particularly in material sciences. However, for top-tier international “Best Researcher” awards, a higher H-index and citation impact might be needed.

Yaseen Iqbal | Materials Science | Best Researcher Award

Prof. Yaseen Iqbal | Materials Science | Best Researcher Award

Scopus Profile

Orcid Profile

Educational Details:

Dr. Yaseen Iqbal holds a Ph.D. in Engineering Materials and Applied Physics from the University of Sheffield, UK (1993-1997), where he completed his thesis on “Early Stage Crystallization in Lithium Silicate-Based Glasses.” He possesses expertise in glass melting, microstructural and phase evolution, crystallization, XRD, EDS, optical microscopy, SEM, and TEM. Prior to this, he earned his M.Sc. in Physics from Gomal University, D.I. Khan, Pakistan (1984-1986), focusing on “Gamma Ray Spectroscopy of Eu152,” with expertise in nuclear physics and quantum mechanics. Dr. Iqbal completed his B.Sc. in Physics, Mathematics, and Statistics from the University of Peshawar, Pakistan (1981-1983).

Professional Experience

Dr. Iqbal has over 32 years of experience in teaching, research, and academic administration. He currently serves as the Dean of the Faculty of Numerical & Physical Sciences at the University of Peshawar (since October 2021) and was previously the Chairman of the Department of Physics (2015-2021). A tenured professor since 2017, he is also the founder and project director of the Materials Research Lab at UOP. His research collaborations have extended internationally, having held postdoctoral positions at the University of Sheffield (1997-2004) and worked as a visiting scientist at Boise State University, USA, and as a visiting academic at Sheffield. He is a Fellow of the Institute of Physics (UK) and holds Chartered Engineer status with the UK Engineering Council, in addition to being a Professional Engineer registered with the Pakistan Engineering Council.

Research Interest

Dr. Iqbal’s research spans materials science, particularly in glass-ceramics, electro-ceramics, and nanomaterials. He has conducted extensive work on phase evolution, crystallization, and microstructural properties of materials, with applications in energy, telecommunication, lasers, and environmental sciences. His projects include the synthesis of novel cover-glass for photovoltaic applications, electro-ceramics for microwave technologies, and rare-earth-doped nanomaterials for live-cell imaging and cancer dosimetry.

Research Contributions

Prof. Iqbal has authored over 140 ISI-indexed journal articles and contributed significantly to material science research through various projects. His key projects include the development of next-generation cover-glass for photovoltaics, electro-ceramics for microwave applications, and nanomaterials for medical and technological applications. He has also played a major role in establishing the Materials Research Laboratory at UOP and contributed to national initiatives, including the development of an engineering university in collaboration with Germany.

Top Notable Publications

Niaz, F., Shah, S. S., Hayat, K., Iqbal, Y., Oyama, M. (2024). “Utilizing rubber plant leaf petioles derived activated carbon for high-performance supercapacitor electrodes.” Industrial Crops and Products, 219, 119161.
Citations: 1

Amir, M., Chaghouri, H. A., Iqbal, Y., Ali, S., Amin, M. (2024). “Enhancement of CO gas sensing with ZnO nanostructures on MWCNTs films.” Ceramics International, 2024, pp. 1–12.
Citations: 0

Ali, H., Uzair, M., Iqbal, Y., Ali, M., Ahmad, W. (2023). “Electrical properties of Barium titanate and graphite incorporated PVA matrix composite (PVA-BaTiO3-G) nanofibers.” Materials Science and Engineering: B, 296, 116655.
Citations: 3

Fayaz, M., Ali, S., Bibi, S., Rooh, G., Kaewkhao, J. (2023). “Luminescence and energy transfer mechanism in Ce3+ and Gd3+ ions in bismuth borate glass.” Ceramics International, 49(15), pp. 24690–24695.
Citations: 5

Rehman, M. U., Manan, A., Ullah, A., Khan, M. A., Muhammad, R. (2023). “Structural, dielectric and complex impedance analysis of Pb-free BaTiO3-Bi(Mg0.5Ce0.5)O3 ceramics.” Journal of Alloys and Compounds, 947, 169575.
Citations: 18

Rehman, M. U., Manan, A., Khan, M. A., Ullah, A., Ahmad, A. S. (2023). “Improved energy storage performance of Bi(Mg0.5Ti0.5)O3 modified Ba0.55Sr0.45TiO3 lead-free ceramics for pulsed power capacitors.” Journal of the European Ceramic Society, 43(6), pp. 2426–2441.
Citations: 16

Uzair, M., Iqbal, Y., Hayat, K., Muhammad, R. (2023). “Sintering behavior, dielectric properties, and impedance spectroscopy of BaTiO3–Li2WO4.” Journal of Materials Science: Materials in Electronics, 34(7), 631.
Citations: 2

Khan, H., Iqbal, Y., Khan, M., Zeng, Y. (2022). “Optical absorption of tri-doped (Mo, Y, N)-TiO2 with first-principle calculations.” Modern Physics Letters B, 36(25), 2250132.
Citations: 0

Li, S., Li, C., Mao, M., Sun, S., Wang, D. (2022). “High Q×f values of Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 microwave dielectric ceramics for 5G/6G LTCC modules.” Journal of the European Ceramic Society, 42(13), pp. 5684–5690.
Citations: 45

Jiang, Y., Liu, H., Muhammad, R., Sun, R., Wang, D. (2022). “Broadband and high-efficiency of garnet-typed ceramic dielectric resonator antenna for 5G/6G communication application.” Ceramics International, 48(18), pp. 26922–26927.
Citations: 33

 

Conclusion

Prof. Yaseen Iqbal’s extensive qualifications, international research collaborations, and successful completion of numerous impactful projects make him an outstanding candidate for the Best Researcher Award. His contributions to materials science, especially in the development of innovative materials for photovoltaics and electro-ceramics, are highly significant. His leadership in establishing research facilities and mentoring future scholars further solidifies his case for the award