Lei Zhao | Materials Science | Best Researcher Award

Mr. Lei Zhao | Materials Science | Best Researcher Award

Associate professor at Longdong University, China

Dr. Zhao Lei is an Associate Professor at the School of Materials Engineering, Longdong University, with a solid foundation in polymer materials and advanced battery technologies. 🎓 Currently pursuing a Ph.D. in Materials Science at Lanzhou University of Technology, he has earned a Master’s in Materials Processing and a Bachelor’s in Polymer Materials Engineering. 🧪 His research is centered on the failure mechanisms and electrolyte affinity of metal electrodes in metal-based batteries. Over the past five years, he has led multiple cutting-edge projects funded by provincial and municipal agencies, focusing on fast-charging hard carbon anodes and novel carbon fiber membranes for sodium-ion and zinc-based energy storage systems. ⚡ His career progression from assistant lecturer to associate professor reflects his dedication and growth in academic research. 📚 Dr. Zhao’s contributions are paving the way for innovations in sustainable energy storage, making him a strong contender for any prestigious research award. 🏆

Professional Profile 

Orcid

Scopus

🎓 Education

Zhao Lei has built an impressive academic background tailored toward materials science and engineering. 📘 He began his journey with a Bachelor’s degree in Polymer Materials and Engineering from Taishan University (2006–2010), establishing his expertise in macromolecular structures. He then pursued a Master’s in Materials Processing Engineering at Lanzhou University of Technology (2010–2013), where he specialized in materials fabrication and behavior. 🔬 Currently, he is a Ph.D. candidate in Materials Science at the same institution, diving deeper into energy materials, particularly those used in batteries and electrochemical systems. 🔋 This progressive academic path showcases a consistent focus on materials innovation and sustainability. His education blends theoretical knowledge with practical application, laying the groundwork for advanced research in battery failure mechanisms and energy storage materials. Zhao Lei’s dedication to continuous learning and specialized education demonstrates his commitment to academic and technological excellence. 🧑‍🎓

👨‍🏫 Professional Experience

Zhao Lei’s professional trajectory at Longdong University is a testament to his dedication and evolving expertise. 📈 Beginning as a Teaching Assistant in 2013, he steadily advanced through roles in the School of Mechanical Engineering and the School of Intelligent Manufacturing, ultimately becoming an Associate Professor in the School of Materials Engineering by 2024. 🏫 His teaching and research roles span over a decade, during which he has mentored students and engaged in forward-thinking research projects in materials and battery engineering. His cross-disciplinary teaching experience, from mechanical foundations to smart manufacturing, reflects his ability to adapt to emerging educational needs and integrate materials science across domains. ⚙️ Now, in his current role, Zhao is deeply engaged in pioneering studies on electrode materials, with an emphasis on real-world applications in energy storage. His career arc demonstrates resilience, leadership, and academic maturity. 💼

🔬 Research Interest

Zhao Lei’s research is driven by the pressing need for efficient and stable energy storage solutions. 🌍 His primary focus lies in understanding the failure mechanisms of metal anodes in metal-based batteries—a crucial factor in the longevity and safety of next-generation battery systems. 🔋 He also investigates how electrode materials interact with electrolytes, particularly enhancing electrolyte affinity to suppress battery degradation. His projects include studies on asphalt-based hard carbon for fast-charging sodium-ion batteries and zinc-metal anode stabilization for aqueous systems. 💡 He explores cutting-edge techniques such as hierarchical porous carbon microspheres and nanostructured carbon fiber membranes for supercapacitors and energy storage. These research themes not only address current industrial challenges but also align with global efforts toward green and sustainable energy technology. ⚡ Zhao’s work bridges theoretical chemistry and industrial-scale innovation, highlighting his capability as a forward-looking energy materials scientist. 🌱

🏅 Awards and Honors

Although specific award titles are not listed, Zhao Lei has received consistent support and recognition through competitive research grants from the Gansu Provincial Science and Technology Department and the Qingyang Science and Technology Bureau. 📑 The successful leadership of four funded research projects, including high-profile key R&D initiatives and natural science foundation programs, reflects trust in his scientific vision and execution skills. 💼 These grants are highly selective, signaling his capacity to design impactful studies, secure funding, and deliver valuable results. His progression to Associate Professor is itself an academic honor, recognizing both his scholarly contributions and institutional service. 🏆 While formal accolades may follow, Zhao Lei’s growing portfolio of research and grants already positions him as a leader in his field. His career continues to gain momentum, and he is well-poised to achieve further distinctions in battery technology and materials science. 🧠

📚 Publications Top Note 

1. Intercalation mechanism of surfactants in vanadium pentoxides interlayer framework for improving electrochemical performance of zinc metal batteries

  • Authors: [Names not provided; likely includes the user or research team]

  • Year: 2025

  • Citations: 0

  • Source: Journal of Alloys and Compounds

  • Summary:
    This study investigates how surfactant molecules can be intercalated into vanadium pentoxide (V₂O₅) layers to improve the structural stability and electrochemical performance of zinc metal batteries. The modified framework enhances zinc ion diffusion and cycle life.


2. Controllable Nitrogen-Doped Hollow Carbon Nano-Cage Structures as Supercapacitor Electrode Materials

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 0

  • Source: Molecules

  • Summary:
    The paper reports the synthesis of nitrogen-doped hollow carbon nano-cages. Their high surface area and tailored pore structure make them promising electrode materials for high-performance supercapacitors with enhanced capacitance and cycling stability.


3. Lithium ion mediated competitive mechanism in polymer solution for fast phase-inversion toward advanced porous electrode materials

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 1

  • Source: Energy Storage Materials

  • Summary:
    This article presents a novel lithium-ion-driven mechanism in polymer solutions that accelerates phase inversion to create highly porous electrode structures. These are beneficial for applications requiring fast ion transport in batteries or supercapacitors.


4. Improving diffusion kinetics of zinc ions/stabilizing zinc anode by molecular slip mechanism and anchoring effect in supramolecular zwitterionic hydrogels

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 1

  • Source: Journal of Colloid and Interface Science

  • Summary:
    This research explores the use of zwitterionic hydrogels to enhance zinc ion mobility and stabilize zinc anodes. The “molecular slip” mechanism and anchoring interactions within the hydrogel matrix reduce dendrite formation and improve cycling performance.


5. Enhanced charge separation in a CoOx@CdS core-shell heterostructure by photodeposited amorphous CoOx for highly efficient hydrogen production

  • Authors: [Names not provided]

  • Year: 2025

  • Citations: 0

  • Source: New Journal of Chemistry

  • Summary:
    This article details the fabrication of a CoOx@CdS core-shell heterostructure with amorphous CoOx photodeposited on the surface. This structure improves charge carrier separation and transfer, enabling more efficient photocatalytic hydrogen evolution.

Conclusion

Zhao Lei is a rising star in the field of materials science and electrochemical energy storage. 🌟 His educational foundation, professional journey, and focused research interests position him at the forefront of sustainable battery innovation. With over a decade of teaching and research experience, he has successfully transitioned into a leadership role within academia, simultaneously contributing to fundamental research and real-world energy applications. 🔄 His grant acquisition and active research trajectory make him a promising candidate for future collaborations, industrial partnerships, and academic awards. As energy challenges mount globally, Zhao’s work on metal anode stabilization and advanced carbon materials holds the potential to impact both science and society. 🌐 He exemplifies the qualities of a best researcher awardee—dedicated, innovative, and impactful. 🏅

Kriti Ranjan Sahu | Material Science | Best Researcher Award

Assist. Prof. Dr .Kriti Ranjan Sahu | Material Science | Best Researcher Award

Assistant Professor, Bhatter College, Dantan(Autonomous), India

Dr. Kriti Ranjan Sahu is an accomplished physicist and academic leader with a track record of novel research in piezoelectricity, superconductivity, optical materials, and bio-physics. His multifaceted experience, spanning material synthesis to device application, reflects deep scientific rigor and societal relevance. His innovations have the potential for technological translation in energy, defense, and industrial applications. Furthermore, his leadership role as HOD and teaching legacy contribute to knowledge dissemination.

Professional Profile

🎓 Education Background

Dr. Kriti Ranjan Sahu earned his Ph.D. in Physics from Jadavpur University in January 2016 under the supervision of Prof. Dr. Udayan De, a former senior scientist at VECC, Kolkata. His doctoral thesis, titled “Study of some piezoelectric and other oxides and of their polymeric composites for applications,” focused on developing advanced functional materials. He completed his M.Sc. in Physics from G.G.D. University, Bilaspur in 2004 with a commendable score of 64.39%. His foundational studies include a B.Sc. in Physics from P.K. College, Contai under Vidyasagar University, and school-level education from Tickrapara Ambikyamoye High School in West Bengal.

🧑‍🏫 Teaching & Academic Experience

Dr. Sahu currently serves as the Assistant Professor and Head of the Department of Physics at Bhatter College, Dantan (Autonomous), Paschim Medinipur, West Bengal, a position he has held since December 11, 2019. Previously, he served as a Government-approved part-time teacher (now SACT) in the Department of Physics at Egra S.S.B. College, from August 2005 to December 2019, where he also led the department. His extensive teaching experience spans undergraduate and postgraduate levels, reflecting his commitment to physics education over two decades.

🧪 Research Expertise and Technical Skills

Dr. Kriti Ranjan Sahu possesses extensive expertise in experimental condensed matter physics, with a strong focus on material synthesis, characterization, and device applications. His core competencies include the preparation of advanced materials such as piezoelectric ceramics, optical glasses, EMI shielding composites, and high-temperature superconductors. He is skilled in a wide range of characterization techniques including X-ray diffraction (XRD), UV-Visible spectroscopy, FTIR, SEM, TEM, Raman spectroscopy, fluorescence analysis, and thermal techniques like DSC, DTA, and TGA. Dr. Sahu has conducted low-temperature resistivity and magnetization measurements, dielectric property analysis, and electrical conductivity studies. His technical abilities extend to refractive index measurement using laser-based methods, as well as organic solar cell fabrication and testing. He has also worked with gamma and ion irradiation processes.

🏆 Awards & Recognitions

While the list of formal recognitions is still growing, Dr. Sahu’s innovations have earned academic distinction and publication in reputed journals, particularly in material physics and applied sciences. His interdisciplinary work has contributed both to fundamental physics and real-world applications, including imaging sensors for nuclear reactors and cost-effective educational lab setups.

Publication Top Notes

  • Title: Ferroelectric materials for high temperature piezoelectric applications
    Authors: U De, KR Sahu, A De
    Journal: Solid State Phenomena, Vol. 232, pp. 235–278
    Citations: 54
    Year: 2015

  • Title: Characterization of new natural cellulosic fibers from Cyperus compactus Retz. (Cyperaceae) Plant
    Authors: Anup Kumar Bhunia, Dheeman Mondal, Kriti Ranjan Sahu, Amal Kumar Mondal
    Journal: Carbohydrate Polymer Technologies and Applications, Vol. 5, 100286
    Citations: 29
    Year: 2023

  • Title: Structural characterization of orthorhombic and rhombohedral lead meta-niobate samples
    Authors: KR Chakraborty, KR Sahu, A De, U De
    Journal: Integrated Ferroelectrics, Vol. 120(1), pp. 102–113
    Citations: 29
    Year: 2010

  • Title: Thermal characterization of piezoelectric and non-piezoelectric Lead Meta-Niobate
    Authors: KR Sahu, U De
    Journal: Thermochimica Acta, Vol. 490(1–2), pp. 75–77
    Citations: 22
    Year: 2009

  • Title: Spectroscopic Investigation of Degradation Reaction Mechanism in γ-Rays Irradiation of HDPE
    Authors: SG Prasad, C Lal, KR Sahu, A Saha, U De
    Journal: Biointerface Research in Applied Chemistry, Vol. 11(2), pp. 9405–9419
    Citations: 19
    Year: 2021

  • Title: Dielectric Properties of PbNb₂O₆ up to 700°C from Impedance Spectroscopy
    Authors: KR Sahu, U De
    Journal: Journal of Materials, Vol. 2013(1), Article ID 702946
    Citations: 19
    Year: 2013

  • Title: Role of Nb₂O₅ phase in the formation of piezoelectric PbNb₂O₆
    Authors: KR Sahu, U De
    Journal: Thermochimica Acta, Vol. 589, pp. 25–30
    Citations: 17
    Year: 2014

  • Title: Dielectric and thermal investigations on PbNb₂O₆ in pure piezoelectric phase and pure non-piezoelectric phase
    Authors: U De, KR Sahu, KR Chakraborty, SK Pratihar
    Journal: Integrated Ferroelectrics, Vol. 119(1), pp. 96–109
    Citations: 16
    Year: 2010

  • Title: Synthesis and study of electroactive nanoparticles and their polymer composites for novel applications
    Authors: N Dutta Gupta, KR Sahu, I Das, A De, U De
    Journal: Indian Journal of Physics, Vol. 84, pp. 1413–1419
    Citations: 14
    Year: 2010

  • Title: Polymer Composites for Flexible Electromagnetic Shields
    Authors: KR Sahu, U De
    Journal: Macromolecular Symposia: Advance Science News, Vol. 381(1), Article 1800097
    Citations: 9
    Year: 2018

Conclusion 

Dr. Kriti Ranjan Sahu is highly suitable for the Best Researcher Award. His scientific excellence, interdisciplinary work, academic leadership, and innovation in material science align well with the award’s objectives. He represents a model researcher whose work pushes the boundaries of applied physics while contributing meaningfully to science, education, and industry. With minor steps to globalize his efforts and protect intellectual property, his profile would reach even greater heights.

Shihao Zhang | Nanostructures | Best Researcher Award

Dr. Shihao Zhang | Nanostructures | Best Researcher Award

Specially Appointed Assistant Professor at Osaka University, Japan.

🎓 Dr. Shihao Zhang (born August 1993) is a Specially Appointed Assistant Professor at Osaka University, Japan, specializing in computational materials science. His research spans materials theory, mechanical properties, crystal defects, nanostructures, and machine learning applications. He earned his Ph.D. in Materials Science from Beihang University and has held prestigious research positions, including a JSPS Postdoctoral Fellowship. Dr. Zhang has contributed significantly to high-throughput materials simulations, publishing 34+ papers in leading journals like npj Computational Materials and Acta Materialia, accumulating 750+ citations (H-index: 13).

Professional Profile:

Scopus Profile

Suitability for Best Researcher Award – Dr. Shihao Zhang

Dr. Shihao Zhang stands out as a strong candidate for the Best Researcher Award due to his remarkable contributions to computational materials science. His expertise in materials theory, nanostructures, and machine learning-driven materials design has significantly advanced the field. His research has led to high-throughput materials simulations, fundamental discoveries in mechanical properties, and the development of innovative software tools.

Education & Experience

📚 Education:

  • 🎓 Ph.D. in Materials Science – Beihang University, 2021
  • 📊 B.S. in Materials Science & Engineering & Applied Mathematics – Dual degrees

🧑‍🏫 Experience:

  • 🔬 Specially Appointed Assistant Professor – Osaka University, Japan
  • 🏅 JSPS Postdoctoral Fellow – Osaka University
  • 💻 Researcher – IT4Innovations, Czech National Supercomputing Centre

Professional Development

🧪 Dr. Shihao Zhang has made significant contributions to computational materials science through advanced modeling, high-throughput simulations, and machine learning techniques. He has developed innovative software tools to enhance material design and prediction capabilities. 📈 His work bridges fundamental materials theory with practical applications, focusing on mechanical properties, plasticity, and nanostructures. 🔗 His research collaborations span multiple international institutions, fostering advancements in computational techniques and supercomputing applications. 🏆 With 34+ publications in prestigious journals and an H-index of 13, Dr. Zhang continues to drive impactful discoveries in materials science.

Research Focus

🛠️ Dr. Zhang’s research lies at the intersection of materials theory, mechanical properties, crystal defects, plasticity, nanostructures, and computational modeling. His expertise in machine learning-driven materials design enables the development of advanced materials with superior mechanical performance. 💡 His work utilizes high-throughput computational methods to predict material behavior at the atomic and nanoscale levels. 🔬 By integrating data-driven approaches with physics-based simulations, he enhances material discovery and optimization. 🌍 His research is essential for innovations in aerospace, electronics, and structural materials, pushing the boundaries of next-generation materials engineering.

Awards & Honors

🏅 JSPS Postdoctoral Fellowship – Japan Society for the Promotion of Science
📜 Multiple Research Grants – Supporting computational materials research
📖 34+ High-Impact Publicationsnpj Computational Materials, Acta Materialia, Physical Review B
📊 750+ Citations (H-index: 13) – Recognized research contributions
💡 Developed Software Tools – For high-throughput materials simulations
🌍 International Research Collaborations – Osaka University, IT4Innovations, and more

Publication Top Notes

  • Title: Temperature and loading-rate dependent critical stress intensity factor of dislocation nucleation from crack tip: Atomistic insights into cracking at slant twin boundaries in nano-twinned TiAl alloys

    • Authors: R. Fu, Rong; Z. Rui, Zhiyuan; J. Du, Junping; F. Meng, Fanshun; S. Ogata, Shigenobu
    • Year: 2025
  • Title: A dislocation perspective on heterointerfacial strengthening in nanostructured diamond and cubic boron nitride composites

    • Authors: H. Wei, Hanqing; H. Zhan, Haifei; D. Legut, Dominik; S. Zhang, Shihao
    • Year: 2025
  • Title: Dislocation plasticity in c-axis nanopillar compression of wurtzite ceramics: A study using neural network potentials

    • Authors: S. Zhang, Shihao; S. Ogata, Shigenobu
    • Year: 2025

LiangJian Zou | Materials Science | Excellence in Research

Masahiro Nishida | Impact Engineering | Best Researcher Award

Dr. Masahiro Nishida | Impact Engineering | Best Researcher Award

Orcid Profile

Educational Details

B.E. in Mechanical Engineering (1991): Tokyo Institute of Technology.

M.E. in Mechanical Engineering (1993): Tokyo Institute of Technology.

Ph.D. in Mechanical Engineering (1996): Tokyo Institute of Technology, under the supervision of Professor H. Matsumoto. His thesis was titled “Evaluation Method of Mechanical Properties for Material by Phase-Sensitive Acoustic Microscope”.

 

Professional Experience

Prof. Nishida began his career as a Research Associate in the Department of Mechanical Science at Tokyo Institute of Technology from 1996 to 1997. He then joined Nagoya Institute of Technology as a Research Associate in 1997, working under Professor K. Tanaka. He progressed to Lecturer (2001-2004), Associate Professor (2004-2018), and has been a full Professor since 2018. In addition to his academic roles, he has served as the General Manager of the Quality Innovation Techno-Center at Nagoya Institute of Technology since 2022. He has also been a visiting researcher at Luleå University of Technology, Sweden, in 2009.

Research Interest

Prof. Masahiro Nishida’s research focuses on the dynamic behavior of materials under extreme conditions, with particular emphasis on hypervelocity impacts and advanced material properties. His work on hypervelocity impact explores the performance of materials like metals and plastics used in space debris bumpers, carbon fiber-reinforced plastics, and components produced through additive manufacturing. In the field of dynamic strength of advanced materials, he investigates the mechanical properties of recycled aluminum alloys, additive manufacturing materials, and biodegradable plastics using the split Hopkinson pressure bar (SHPB) technique, which allows for high-strain-rate testing. Additionally, his research into the dynamics of heterogeneous materials involves studying the behavior of aggregated soft particles and understanding how contact forces propagate within these assemblies. This combination of experimental and computational approaches provides valuable insights into the resilience and performance of materials in extreme environments.

Top Notable Publications

Effects of electron beam irradiation on hypervelocity impact behavior of carbon fiber reinforced plastic plates
Journal: Journal of Composite Materials
Published: December 2021
DOI: 10.1177/00219983211037049
Citations: Data not provided through Scopus.

Effects of the shapes and addition amounts of crosslinking reagents on the properties of poly‐3‐hydroxybutyrate/poly(caprolactone) blends
Journal: Journal of Applied Polymer Science
Published: June 2021
DOI: 10.1002/app.51210
Citations: Data not provided through Scopus.

Effect of chain extender on morphology and tensile properties of poly(l-lactic acid)/poly(butylene succinate-co-l-lactate) blends
Journal: Materials Today Communications
Published: March 2021
DOI: 10.1016/j.mtcomm.2020.101852
Citations: Data not provided through Scopus.

Correlative analysis between morphology and mechanical properties of poly-3-hydroxybutyrate (PHB) blended with polycaprolactone (PCL) using solid-state NMR
Journal: Polymer Testing
Published: November 2020
DOI: 10.1016/j.polymertesting.2020.106780
Citations: Data not provided through Scopus.

Correlative analysis between solid-state NMR and morphology for blends of poly(lactic acid) and poly(butylene adipate-co-butylene terephthalate)
Journal: Polymer
Published: 2020
DOI: 10.1016/j.polymer.2020.122591
Citations: Data not provided through Scopus.

Effects of deformation rate on tensile properties of ramie fiber/PLA/PBAT composites
Conference: ECCM 2018 – 18th European Conference on Composite Materials
Published: 2020
EID: 2-s2.0-85084162322
Citations: Data not provided through Scopus.

Effects of gamma ray irradiation on penetration hole in and fragment size from carbon fiber reinforced composite plates in hypervelocity impacts
Journal: Composites Part B: Engineering
Published: July 2019
DOI: 10.1016/j.compositesb.2019.04.007
Citations: Data not provided through Scopus.

Influence of impact angle on size distribution of fragments in hypervelocity impacts
Journal: International Journal of Impact Engineering
Published: June 2019
DOI: 10.1016/j.ijimpeng.2019.02.006
Citations: Data not provided through Scopus.

Conclusion

Prof. Masahiro Nishida is a highly qualified candidate for the Best Researcher Award. His strong educational background, extensive research experience, leadership roles, and cutting-edge research in dynamic material properties and hypervelocity impact make him a prominent figure in mechanical engineering. His research aligns well with current industrial needs, particularly in aerospace, sustainability, and material innovation, further enhancing his candidacy for such an award.