Rihab Chhoud | Chemistry | Best Researcher Award

Dr. Rihab Chhoud | Chemistry | Best Researcher Award

Postdoctoral Researcher at Faculty of Pharmacy of Monastir, Tunisia

Dr. Rihab Chhoud 🇹🇳 is a dynamic Tunisian chemist specializing in the phytochemical and pharmacological exploration of bioactive compounds from oasis fruit trees 🌴. With a Ph.D. in Chemistry from the Faculty of Sciences of Monastir (2022), her work integrates organic synthesis, biomolecule characterization, and drug discovery. A seasoned researcher with international exposure, Dr. Chhoud conducted significant doctoral internships in Italy 🇮🇹 and Spain 🇪🇸, enriching her scientific depth. Her postdoctoral research focuses on green extraction of oleuropein from organic olive leaves 🌿 for nutraceutical applications. She has authored impactful publications in journals like International Journal of Biological Macromolecules and Chemical Biodiversity, targeting antidiabetic, antiherpetic, and antioxidant therapies. Passionate about soft skills and academic writing, she also actively trains students in chemistry-related disciplines. Dr. Chhoud exemplifies the new wave of innovative, globally-aware women scientists making substantial contributions to sustainable health sciences 🌍👩‍🔬.

Professional Profile 

🎓 Education

Dr. Rihab Chhoud’s academic journey began with a fundamental license in Chemistry from Gabes University 🎓. She pursued a Research Master’s in Organic Synthesis at Monastir, delving into the biomolecular richness of Tunisian date seeds 🌰. Her Ph.D. (2017–2022) at the Laboratory of Advanced Materials and Interfaces (LIMA) showcased her multidisciplinary strengths—merging chemistry, pharmacology, and bioactivity profiling. Supervised by Prof. Hatem Majdoub, her doctoral research examined biologically active compounds from oasis fruit trees, blending traditional knowledge with modern analytical tools. Additional certifications in academic writing, soft skills, and molecular docking reflect her commitment to holistic scientific development 📚. Her global perspective was enhanced by internships in Italy and Spain, sharpening her technical fluency and international communication 🌐. From high school distinctions to postgraduate excellence, Dr. Chhoud’s educational background is rooted in resilience, curiosity, and consistent academic merit. Her learning path is a testament to dedication, purpose, and interdisciplinary vision 🌟.

🧪 Professional Experience

Dr. Chhoud has cultivated rich professional experience in academia and international research environments 👩‍🏫. As a postdoctoral researcher at the Faculty of Pharmacy, Monastir (2025–present), she’s engaged in green chemistry innovations involving oleuropein extraction from organic olive leaves 🌿. She previously served as a temporary teacher, delivering practical chemistry lessons ranging from biochemistry to chromatographic techniques. Her career includes prestigious doctoral research stays in Spain and Italy, exploring bioactive substances and their therapeutic potential under expert mentorship 🇪🇸🇮🇹. From 2014 to 2023, she consistently pursued opportunities to refine her scientific writing, English proficiency, and lab methodology through summer schools, soft-skill workshops, and publishing programs 📖. Her ability to transition seamlessly between labs, classrooms, and international forums marks her as a versatile and proactive professional. Dr. Chhoud’s career pathway embodies a globalized, interdisciplinary, and education-oriented model, empowering her to address complex chemical and biomedical challenges with clarity and creativity 🧬.

🧠 Research Interests

Dr. Chhoud’s research interests lie at the intersection of natural product chemistry, green extraction technologies, and biomedical applications 🌿💊. Her investigations have centered on isolating and characterizing polyphenols, polysaccharides, and fatty substances from Tunisian plant sources, particularly date palms and olive leaves 🌴. She’s deeply invested in understanding the pharmacological properties of these compounds, such as antidiabetic, wound-healing, and antiviral effects. Her advanced techniques include UPLC-MS analysis, molecular docking, and structure–activity relationship (SAR) studies 🔬. Currently, her work on oleuropein optimization for nutraceuticals aligns with global trends in sustainable healthcare and functional foods. Dr. Chhoud is also intrigued by biopolymers and their enzymatic behaviors in disease models such as Parkinson’s 🧬. Whether studying enzyme inhibition or plasma antioxidant levels, her aim is to extract value from nature using chemistry, for practical therapeutic benefit. Her research bridges tradition and innovation—transforming indigenous flora into global health solutions 🌍💡.

🏆 Awards and Honors

While Dr. Chhoud’s formal accolades are still emerging, her academic path and global participation reflect significant recognition and promise 🎖️. She was competitively selected for doctoral internships in top labs in Naples and Granada, funded by the Tunisian Ministry of Higher Education and ERASMUS+, respectively 🌍. She has also benefited from advanced training in scientific writing, academic English, soft skills, and computational drug design—showcasing her proactive pursuit of excellence beyond standard curricula 🏅. Her peer-reviewed publications in internationally indexed journals further demonstrate her contributions to cutting-edge research. Participating in events like International Day of Women and Girls in Science underscores her commitment to STEM equity 👩‍🔬✨. Dr. Chhoud’s work represents the intellectual resilience and innovation of North African women in science, and her continuous self-development initiatives signal future accolades at national and international levels 🥇📚.

📚 Publications Top Note 

1. Structural characterization and functional evaluation of polysaccharides extracted from the heart of date palm (Phoenix dactylifera L.): Insights into α-amylase inhibition and antidiabetic potential

  • Authors: Rihab Chhoud

  • Year: 2025

  • Citation (DOI): 10.1016/j.ijbiomac.2025.145425

  • Source: International Journal of Biological Macromolecules

  • Summary:
    This study investigates the structure and function of bioactive polysaccharides derived from the heart of date palm. Using various analytical techniques, the research characterizes their molecular composition and morphology. The polysaccharides exhibit notable α-amylase inhibition, indicating their potential as natural antidiabetic agents by moderating glucose release. These findings support the use of date palm-derived compounds in functional food or therapeutic formulations for diabetes management.


2. Chemical Profile of the Pits Oil from the Tunisian ‘Alig’ Cultivar of Phoenix dactylifera L.: In Vivo Wound Healing Potential Evaluation of a Cream Formulated from the Extracted Oil and Insights from Molecular Docking and SAR Analysis

  • Authors: Rihab Chhoud

  • Year: 2023

  • Citation (DOI): 10.1002/cbdv.202200533

  • Source: Chemistry & Biodiversity

  • Summary:
    This paper reports the chemical composition of oil extracted from the pits of the Tunisian date palm cultivar ‘Alig’. The formulated oil-based cream demonstrated significant wound healing properties in in vivo animal models. Additionally, molecular docking and structure–activity relationship (SAR) analysis identified possible mechanisms behind the bioactivity, suggesting fatty acids and phenolic compounds as key active constituents. The research supports the oil’s use in topical therapies for skin injuries.


3. Identification of an anti-herpetic compound isolated from Pistacia vera L. male floral buds

  • Authors: Rihab Chhoud

  • Year: 2022

  • Citation (DOI): 10.1007/s13205-022-03393-y

  • Source: 3 Biotech

  • Summary:
    The study isolated and identified a bioactive compound from male floral buds of Pistacia vera (pistachio) with anti-herpetic properties. In vitro assays confirmed inhibitory effects against herpes simplex virus (HSV) strains. The compound demonstrated low cytotoxicity and high selectivity index, making it a promising natural antiviral candidate. The work adds value to underexplored parts of the pistachio plant in phytopharmaceutical development.


4. Phytochemical and Bioactivities of Male Flower Buds of Fruit Trees from the Southern Tunisia: Polyphenols UPLC-MS Profiles and Antioxidant Enzymatic Potential in Human Plasma of Parkinson’s Disease Patients

  • Authors: Rihab Chhoud

  • Year: 2022

  • Citation (DOI): 10.1007/s42250-022-00430-4

  • Source: Chemistry Africa

  • Summary:
    This paper explores the polyphenolic composition (via UPLC-MS) of male flower buds from various fruit trees in southern Tunisia and evaluates their antioxidant effects on human plasma from Parkinson’s disease patients. The extracts enhanced enzymatic antioxidant defenses (e.g., SOD, CAT) and reduced oxidative stress markers. The findings highlight the neuroprotective potential of these traditional plant parts, paving the way for complementary therapies in neurodegenerative diseases

🔚 Conclusion

In conclusion, Dr. Rihab Chhoud is a forward-thinking chemist blending rigorous science with social impact 🔍💚. Her interdisciplinary training, international collaborations, and research on bioactive compounds place her at the forefront of sustainable biomedical innovation. A passionate teacher, active researcher, and lifelong learner, she bridges laboratory precision with real-world relevance. Her dedication to natural product discovery and green chemistry aligns with global health and environmental goals. From oasis fruit trees to molecular modeling, her journey is rooted in both local heritage and global vision 🌿🌐. With her expanding publication record and strong academic foundation, Dr. Chhoud is poised to contribute substantially to nutraceutical development, pharmacological science, and academic mentorship. A shining example of Tunisia’s emerging scientific talent, her career holds promise for further breakthroughs in natural therapies and chemical biology. The future looks bright for this devoted researcher, educator, and role model in modern chemistry 🧪✨.

Jian-Bo Qu | Chemical Engineering | Best Researcher Award

Prof. Jian-Bo Qu | Chemical Engineering | Best Researcher Award

Dean at China University of Petroleum (East China), China

Prof. Jian-Bo Qu 🎓 is a distinguished researcher and full professor at the China University of Petroleum (East China) 🏫. With a PhD from the Chinese Academy of Sciences (2009) 🧪, his expertise spans bioseparation media, drug delivery systems, and biomaterials 🧫💊. He has published over 50 peer-reviewed papers 📚, authored a book and book chapter 📖, and holds 15 patents 🛠️. As an active member of the Chinese Chemical Society 🧬 and reviewer for top-tier journals 🧾, Prof. Qu continues to contribute cutting-edge innovations in analytical chemistry and biomedical engineering 🧪🧠.

Professional Profile

Scopus

Suitability For Best Researcher Award -Prof. Jian-Bo Qu

Prof. Jian-Bo Qu is an established scholar in the field of chemical and biomedical engineering, with a strong interdisciplinary profile that bridges bioseparation, biomaterials, and drug delivery systems. His career demonstrates a blend of innovation, leadership, and international exposure. With over 50 publications, 15 patents, and leadership in 15+ funded projects (including national-level grants), he clearly meets and exceeds the standard criteria for a high-impact researcher.

Education & Experience

  • 🎓 PhD in Chemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences (2009)

  • 🌍 Visiting Scholar, University of New South Wales, Australia (2015–2016) under Prof. Martina Stenzel

  • 🏫 Full Professor, College of Chemistry and Chemical Engineering, China University of Petroleum (East China)

  • 🧬 Reviewer for journals like Macromolecules, Chemical Engineering Journal, Analytical Chemistry, etc.

  • 🏅 Project Leader of 15+ funded research projects including 3 by the National Natural Science Foundation of China

Professional Development

Prof. Qu’s professional development reflects a trajectory of excellence and continuous growth 📊. His postdoctoral training and international exposure in Australia 🌏 enriched his research perspectives in polymer science and biomedical engineering 🧪. He actively participates in peer review for high-impact journals 🧾 and serves as an expert evaluator for national and provincial science foundations 🏛️. Beyond publishing and patents, Prof. Qu contributes to academic leadership through his society memberships and textbook authorship 📚. His multidisciplinary expertise and active engagement in research communities have made him a vital figure in modern chemical and materials science.

Research Focus Category 

Prof. Jian-Bo Qu’s research focuses on several key categories within chemical and biomedical engineering 🔬. His primary interest lies in bioseparation technology and separation process intensification 🧪, essential for efficient protein purification and enzyme immobilization 🧬. He also works on biomaterials, including drug delivery systems, hemostatic agents, and wound healing hydrogels 💊🩹. His recent studies have explored smart nanomaterials for targeted cancer therapy, contributing to advancements in personalized medicine 🧠🎯. Additionally, Prof. Qu’s work on functional polymers and composite materials plays a pivotal role in bridging materials science with biomedical applications.

Awards & Honors

  • 🏅 Principal Investigator of 15+ research projects, including 3 funded by the National Natural Science Foundation of China

  • 🎖️ Patent Holder of 15 innovative technologies in bioseparation and biomaterials

  • 📚 Book and Chapter Author in scientific publishing

  • 🧪 Peer Reviewer for top journals such as Analytical Chemistry, Chemical Engineering Journal, Macromolecules

  • 🧬 Member, Chinese Chemical Society

  • 🏛️ Evaluator, National and Provincial Natural Science Foundation committees.

Publication Top Notes

Hierarchically Three-Dimensional Bicontinuous Monoliths: Fabrication Strategies, Mechanisms, Functionalization, and Applications
  • Year: 2025

  • Summary: This review article explores the fabrication methods, mechanisms, functionalization strategies, and diverse applications of hierarchically three-dimensional bicontinuous monoliths. These materials are characterized by interconnected porous structures, offering enhanced surface areas and tunable properties suitable for applications in catalysis, separation processes, and biomedical fields.

Two Antihypertensive and Antioxidant Peptides Derived from Alaska Pollack (Theragra chalcograma) Skin: In Silico, In Vitro, and In Vivo Investigation
  • Year: 2025

  • Summary: This study identifies two novel peptides from Alaska pollack skin with dual antihypertensive and antioxidant activities. Through in silico, in vitro, and in vivo analyses, the peptides demonstrated significant angiotensin-converting enzyme (ACE) inhibitory effects and antioxidant properties, suggesting their potential as functional ingredients in nutraceuticals and functional foods.

Biotin@DpaZn Molecules Enabled Efficient Enrichment of N-Phosphopeptides under Neutral Conditions
  • Year: 2025

  • Summary: This article presents the development of Biotin@DpaZn molecules for the efficient enrichment of N-phosphopeptides under neutral conditions. The method enhances the identification of N-phosphorylation sites, facilitating the exploration of protein functions and signaling pathways in various biological systems.

Hydrophilic Interaction Liquid Chromatography-Based Enrichment Method for Deciphering the N-Phosphorylated Proteome Landscape
  • Year: 2025

  • Summary: This research introduces a hydrophilic interaction liquid chromatography (HILIC)-based strategy for enriching N-phosphopeptides under neutral conditions. The method significantly increases the identification of N-phosphorylation sites, providing insights into the N-phosphoproteome landscape across different biological samples, including Escherichia coli and HeLa cells.

Dual-mode and Multiplex Lateral Flow Immunoassay: A Powerful Technique for Simultaneous Screening of Respiratory Viruses
  • Year: 2025

  • Summary: This study develops a dual-mode and multiplex lateral flow immunoassay for the simultaneous detection of multiple respiratory viruses. The assay combines colorimetric and fluorescence signals, offering a rapid, cost-effective, and user-friendly platform for point-of-care diagnostics.

Conclusion

Prof. Jian-Bo Qu exemplifies the qualities of a top-tier researcher: impactful innovation, academic leadership, international collaboration, and dedication to scientific advancement. His extensive contributions to chemical engineering and biomedical applications make him a highly suitable recipient of the Best Researcher Award. His profile not only reflects past achievements but ongoing potential to shape the future of interdisciplinary scientific research.

Xian-Kai Wan | Chemistry | Best Researcher Award

Prof. Dr. Xian-Kai Wan | Chemistry | Best Researcher Award

Prof. Dr. Xian-Kai Wan at Sichuan University, China.

Dr. Xian-Kai Wan is a distinguished chemist specializing in metal cluster chemistry, with a strong focus on the precise synthesis, luminescent properties, and catalytic applications of metal nanoclusters. He is currently a Professor at Sichuan University, China, and has held research positions at top institutions in Japan and Singapore. With a Ph.D. from Xiamen University, Dr. Wan has contributed significantly to nanomaterial science, authoring numerous high-impact publications. His work has been recognized with prestigious fellowships and awards, making him a leading figure in nanochemistry and molecular engineering.

Professional Profile

ORCID

Suitability for Best Researcher Award 🏆

Dr. Xian-Kai Wan is an outstanding candidate for the Best Researcher Award due to his pioneering work in metal cluster chemistry and nanomaterial science. His research contributions have significantly advanced the fields of precise nanocluster synthesis, catalytic applications, and luminescent properties, which are critical for energy conversion, environmental sustainability, and biomedical applications. His interdisciplinary approach and collaborations with top global institutions further highlight his impact in the scientific community.

Education & Experience 🎓🔬

📌 2021 – Present: Professor, College of Chemistry, Sichuan University, China
📌 2018 – 2021: Special Researcher, Research Center for Materials Science, Nagoya University, Japan (JSPS)
📌 2017 – 2018: Research Fellow, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
📌 2011 – 2017: Ph.D. in Chemistry, School of Chemistry and Chemical Engineering, Xiamen University, China
📌 2007 – 2011: Bachelor of Engineering, School of Chemistry and Chemical Engineering, Chongqing University, China

Professional Development 📚🔍

Dr. Wan has made groundbreaking contributions to the field of metal nanoclusters, particularly in the design and synthesis of atomically precise nanomaterials for catalytic and photothermal applications. His research explores the interplay of core structures and ligand effects to enhance the performance of nanoclusters in energy conversion and biomedical applications. Through interdisciplinary collaborations, he has developed innovative materials with enhanced luminescence and catalytic efficiency. His work is shaping the next generation of nanotechnology-driven solutions in sustainable chemistry and materials science.

Research Focus 🧪⚛️

Dr. Xian-Kai Wan’s research centers on metal cluster chemistry, with a specific emphasis on:
🔹 Precise synthesis of metal nanoclusters for enhanced stability and functionality
🔹 Exploring luminescent properties of gold and alloy clusters for optoelectronic applications
🔹 Catalytic advancements using atomically engineered nanoclusters in hydrogenation and CO₂ reduction
🔹 Structural-property relationships of metal nanoclusters for energy conversion and storage
🔹 Interfacing nanomaterials for biomedical and environmental applications

Awards & Honors 🏆🎖️

2023: Cultivation Program for Young Academic Leaders in Science and Technology, Sichuan University
2022: The Youth Talent Support Program, Sichuan
2021: The Youth Talent Support Program, Sichuan University
2019: Postdoctoral Fellowship, Japan Society for the Promotion of Science (JSPS)
2015: National Scholarship, Ministry of Education, China

Domain & Subdomain of Dr. Xian-Kai Wan’s Research

📌 Domain: Chemistry 🧪🔬
📌 Subdomains:
🔹 Nanochemistry – Synthesis and study of nanoclusters
🔹 Material Science – Engineering and application of nanomaterials
🔹 Catalysis – Nanocatalysts for hydrogenation and CO₂ reduction
🔹 Optoelectronics – Luminescent properties of metal nanoclusters
🔹 Sustainable Energy – Nanomaterials for energy conversion and storage

Pubication Top Notes

1️⃣ Ultrafine Pt–Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis 🔬

2️⃣ Ligand‐Protected Au55 with a Novel Structure and Remarkable CO2 Electroreduction Performance

3️⃣ Confining Sub‐Nanometer Pt Clusters in Hollow Mesoporous Carbon Spheres for Boosting Hydrogen Evolution Activity ⚙️

4️⃣ Alkynyl Approach toward the Protection of Metal Nanoclusters 🏗️

5️⃣ Ligand effects in catalysis by atomically precise gold nanoclusters 🏅  📊 Cited by: N/A

6️⃣ Homoleptic Alkynyl-Protected Gold Nanoclusters: Au44(PhC≡C)28 and Au36(PhC≡C)24 🔍

7️⃣ Atomically Precise Bimetallic Au19Cu30 Nanocluster with an Icosidodecahedral Cu30 Shell and an Alkynyl–Cu Interface 🧪