Dr. Meri Algarni | Condensed Matter Physics | Best Researcher Award

Dr. Meri Algarni | Condensed Matter Physics | Best Researcher Award

Associate Professor | Al-Baha University | Saudi Arabia

Dr. Meri Algarni is an accomplished researcher in Condensed Matter Physics, recognized for His innovative work on magnetic and topological phenomena in low-dimensional materials. His contributions have significantly advanced the understanding of electronic and magnetic properties in van der Waals heterostructures, bridging theoretical insights with experimental discoveries in Condensed Matter Physics. With a strong research background in Condensed Matter Physics, He has explored carrier-mediated ferromagnetism, gate-controlled phase transitions, and quantum effects that underpin next-generation spintronic and energy-efficient devices. Dr. Algarni’s expertise in Condensed Matter Physics encompasses nanoscale characterization techniques such as SEM, AFM, and PPMS, enabling his to investigate magnetic and structural behaviors at the atomic scale. His research in Condensed Matter Physics has been published in high-impact journals, including Physical Review Letters, Nature Communications, and ACS Nano Letters, reflecting global recognition of his scientific contributions. Through his work on tunable artificial topological Hall effects and gate-tuned magnetic transitions, He continues to make influential contributions to Condensed Matter Physics, advancing the development of future quantum materials and low-energy electronic technologies. In addition to his research achievements, Dr. Algarni has actively participated in international conferences and collaborations, strengthening global scientific networks within Condensed Matter Physics. His dedication to advancing Condensed Matter Physics extends to mentoring and teaching, inspiring emerging scientists to engage in experimental and theoretical studies within the field. His scholarly impact in Condensed Matter Physics demonstrates a rare combination of technical mastery, analytical rigor, and interdisciplinary insight that drives innovation in material science and nanotechnology. His Google Scholar profile records 530 citations, an h-index of 11, and an i10-index of 12, underscoring his substantial and growing influence in Condensed Matter Physics worldwide.

Profiles: Google Scholar | ORCID

Featured Publications

1. Zheng, G., Xie, W. Q., Albarakati, S., Algarni, M., Tan, C., Wang, Y., Peng, J., … (2020). Gate-tuned interlayer coupling in van der Waals ferromagnet nanoflakes. Physical Review Letters, 125(4), 047202.

2. Tan, C., Xie, W. Q., Zheng, G., Aloufi, N., Albarakati, S., Algarni, M., Li, J., … (2021). Gate-controlled magnetic phase transition in a van der Waals magnet Fe₅GeTe₂. Nano Letters, 21(13), 5599–5605.

3. Albarakati, S., Xie, W. Q., Tan, C., Zheng, G., Algarni, M., Li, J., Partridge, J., … (2022). Electric control of exchange bias effect in FePS₃–Fe₅GeTe₂ van der Waals heterostructures. Nano Letters, 22(15), 6166–6172.

4. Zheng, G., Wang, M., Zhu, X., Tan, C., Wang, J., Albarakati, S., Aloufi, N., … (2021). Tailoring Dzyaloshinskii–Moriya interaction in a transition metal dichalcogenide by dual-intercalation. Nature Communications, 12(1), 3639.

5. Zheng, G., Tan, C., Chen, Z., Wang, M., Zhu, X., Albarakati, S., Algarni, M., … (2023). Electrically controlled superconductor-to-failed insulator transition and giant anomalous Hall effect in kagome metal CsV₃Sb₅ nanoflakes. Nature Communications, 14(1), 678.

Dr. Mohsin Rafique | Condensed Matter Physics | Excellence in Research Award 

Dr. Mohsin Rafique | Condensed Matter Physics | Excellence in Research Award 

Assistant Research Scientist | Beijing Academy of Quantum Information Sciences | China

Dr. Mohsin Rafique is an accomplished researcher in the field of Condensed Matter Physics, currently serving as a Research Scientist (Assistant) at the Beijing Academy of Quantum Information Sciences, China. His academic foundation in physics, including a PhD and MS from COMSATS Institute of Information Technology, has enabled him to explore critical areas of Condensed Matter Physics, particularly focusing on quantum transport, superconductivity, and magnetoelectric materials. Throughout his professional journey, he has contributed extensively to Condensed Matter Physics research through postdoctoral work at Tsinghua University and collaborative projects in Germany and Italy. His research interests encompass quantum phase transitions, magnetism, and multiferroic thin films all deeply rooted in Condensed Matter Physics principles. Dr. Rafique has received multiple awards and fellowships, including the Tsinghua University Postdoctoral Fellowship and COMSATS Research Productivity Award, reflecting his excellence in Condensed Matter Physics research and innovation. His research skills span quantum material fabrication, magnetoelectric measurements, and nanoscale device development, further demonstrating his command of Condensed Matter Physics methodologies. His work has been published in top-tier journals like Nano Letters, Applied Physics Letters, and Nature Communications, showcasing significant contributions to Condensed Matter Physics and related interdisciplinary fields. With his dedication to advancing scientific understanding in Condensed Matter Physics, Dr. Mohsin Rafique stands as a prominent figure whose expertise continues to influence modern material science.Google Scholar profile of 553 Citations, 13 h-index, 18 i10-index.

Profiles: Google Scholar | ORCID

Featured Publications

1. Rashid, J., Abbas, A., Chang, L. C., Iqbal, A., Haq, I. U., Rehman, A., Awan, S. U., & others. (2019). Butterfly cluster like lamellar BiOBr/TiO₂ nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Science of the Total Environment, 665, 668–677.

2. Rashid, J., Saleem, S., Awan, S. U., Iqbal, A., Kumar, R., Barakat, M. A., Arshad, M., & others. (2018). Stabilized fabrication of anatase-TiO₂/FeS₂ (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue. RSC Advances, 8(22), 11935–11945.

3. Liao, M., Wang, H., Zhu, Y., Shang, R., Rafique, M., Yang, L., Zhang, H., Zhang, D., & others. (2021). Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe₂ superconductor. Nature Communications, 12(1), 5342.

4. Awan, S. U., Hasanain, S. K., Rashid, J., Hussain, S., Shah, S. A., Hussain, M. Z., & others. (2018). Structural, optical, electronic and magnetic properties of multiphase ZnO/Zn(OH)₂/ZnO₂ nanocomposites and hexagonal prism shaped ZnO nanoparticles synthesized by pulse laser. Materials Chemistry and Physics, 211, 510–521.

5. Rafique, M., Feng, Z., Lin, Z., Wei, X., Liao, M., Zhang, D., Jin, K., & Xue, Q. K. (2019). Ionic liquid gating induced protonation of electron-doped cuprate superconductors. Nano Letters, 19(11), 7775–7780.*

Assoc. Prof. Dr. Zukhra V. Gareeva | Condensed Matter Physics | Women Researcher Award

Assoc. Prof. Dr. Zukhra V. Gareeva | Condensed Matter Physics | Women Researcher Award

Leading Scientist | Institute of Molecule and Crystal Physics | Russia

Assoc. Prof. Dr. Zukhra V. Gareeva is a distinguished physicist specializing in Condensed Matter Physics, serving as Head of the Theoretical Physics Laboratory at the Institute of Molecule and Crystal Physics, Russian Academy of Sciences. Her academic foundation in Theoretical and Condensed Matter Physics from Bashkir State University and the General Physics Institute established a prolific research career in Condensed Matter Physics focused on multiferroics, magnetic materials, domain structures, spintronics, and nanostructures. She has contributed significantly to Condensed Matter Physics through extensive studies on magnetoelectric and topological phenomena, advancing understanding of Dzyaloshinskii–Moriya interactions and symmetry analysis in multiferroic systems. With a Doctorate in Condensed Matter Physics, she has authored numerous high-impact publications in journals such as Physical Review B, Journal of Magnetism and Magnetic Materials, and Physics of the Solid State. Her research in Condensed Matter Physics integrates theory and computation to explore the microscopic origins of magnetism and spin dynamics in complex materials. Recognized with over 883 Google Scholar citations, an h-index of 16, and an i10-index of 27, she is a respected voice in international Condensed Matter Physics communities, serving as reviewer and guest editor for leading journals. Her professional achievements in Condensed Matter Physics have been complemented by collaborations with global institutions and contributions to scientific symposia. Through deep expertise in Condensed Matter Physics and innovative approaches to theoretical modeling, Assoc. Prof. Dr. Gareeva continues to shape the future directions of modern materials science and applied magnetism.

Profiles: ORCID | Google Scholar

Featured Publications

1. Gareeva, Z. V., & Filippova, V. V. (2025). Topological states in magnetic multilayers with hybrid anisotropy and Dzyaloshinskii–Moriya interaction. Journal of Magnetism and Magnetic Materials.

2. Gareeva, Z., Filippova, V., Gareev, S., & Sharafullin, I. (2025). Tailoring topological magnetic states in multilayer nanostructures: Bloch points, chiral bobbers, and skyrmion tubes. Nanomaterials.

3. Popov, A. I., Gareeva, Z. V., & Zvezdin, A. K. (2025). Quantum theory of the spin dynamics excited by ultrashort THz laser pulses in rare earth antiferromagnets. DyFeO₃. Journal of Physics: Condensed Matter.

4. Gareeva, Z., Filippova, V., Shulga, N., & Doroshenko, R. (2024). Magnetoelectric effects in magnetic films with alternating magnetic anisotropy: The emergence and stability of Bloch points. Physical Chemistry Chemical Physics.

5. Gareeva, Z. V., Trochina, A. M., Gareev, T., & Zvezdin, A. K. (2024). Magnetoelectric effects in synthetic multiferroic structures for spintronic applications. Bulletin of the Russian Academy of Sciences: Physics.

Dr. Guy-Vano Tsamo | Materials Physics | Best Researcher Award

Dr. Guy-Vano Tsamo | Materials Physics | Best Researcher Award

Postdoctoral Researcher at LTM/CEA/LETI, France

Dr. Guy-vano Tsamo is a dedicated researcher in materials physics, with a strong background in experimental and theoretical approaches to surface science and nanostructures. His work in materials physics focuses on the growth, characterization, and analysis of complex systems such as III-V heterostructures and III-nitride nanostructures. Through materials physics, he applies advanced spectroscopy, microscopy, and modeling tools to solve challenges in optoelectronics and RF electronics. In his career, materials physics serves as the core framework, guiding innovations in thin-film fabrication, chemical characterization, and interface studies. Dr.  Tsamo’s expertise in materials physics bridges fundamental science and technological applications, making him a recognized figure in the global materials physics research community.

Professional Profile

Scopus

Education 

Dr. Guy-vano Tsamo’s academic path is deeply rooted in materials physics, with advanced studies in condensed matter, nanomaterials, and dense environments. His doctoral research in materials physics explored the growth and characterization of III-nitride nanostructures on III-V substrates using state-of-the-art techniques. Earlier, he pursued master’s-level studies in materials physics with a focus on two-dimensional materials and spin-photodiodes, reinforcing his understanding of electronic and optical properties. This academic progression reflects a continuous commitment to materials physics, enabling him to master both experimental and computational aspects. By integrating materials physics into every phase of his education, Dr.  Tsamo built a versatile foundation for research, combining laboratory precision, theoretical modeling, and a deep appreciation for how materials physics drives technological advances.

Experience 

In his professional journey, Dr. Guy-vano Tsamo has applied materials physics in advanced research environments, particularly in microelectronics and surface analysis. At leading laboratories, his materials physics expertise has been central to projects involving III-V heterostructures, III-nitride nanostructures, and chemical characterization techniques. Through materials physics, he has contributed to optoelectronic and RF component innovation, utilizing XPS, HAXPES, ToF-SIMS, and microscopy tools. His materials physics-based approach ensures precise interface studies, defect analysis, and growth optimization. By combining materials physics theory with practical implementation, Dr. Tsamo has consistently delivered results that push the boundaries of current technologies, making materials physics both his professional signature and his driving force in advancing material science applications.

Research Interest 

Dr. Guy-vano Tsamo’s research interests revolve around materials physics, particularly in the growth, characterization, and analysis of nanoscale and thin-film structures. His work in materials physics spans epitaxial growth, electronic structure analysis, and surface/interface engineering for optoelectronic applications. Within materials physics, he explores III-nitrides, III-V compounds, and two-dimensional materials, aiming to optimize performance for LEDs, detectors, and RF devices. He is passionate about advancing materials physics methodologies, combining spectroscopy, microscopy, and computational modeling. In every project, materials physics provides the conceptual and experimental framework, allowing Dr. Tsamo to connect atomic-scale phenomena to device-scale properties. This deep focus on materials physics ensures his research remains impactful and technologically relevant.

Award and Honor

Dr. Guy-vano Tsamo has earned recognition for his outstanding contributions to materials physics, including prestigious awards for research excellence and scientific communication. His achievements in materials physics have been celebrated in academic and public platforms, highlighting his ability to translate complex materials physics concepts into accessible knowledge. These honors underscore his leadership in advancing materials physics research, from nanoscale fabrication to large-scale applications. Awards in materials physics are not just personal milestones but also affirmations of his broader scientific vision. By excelling in materials physics, Dr. Tsamo continues to inspire peers and future scientists, demonstrating the transformative potential of materials physics in addressing modern technological challenges.

Research Skill

Dr. Guy-vano Tsamo possesses a comprehensive set of skills in materials physics, encompassing epitaxy, spectroscopy, microscopy, and modeling. His materials physics expertise includes operating ultra-high vacuum systems, performing molecular beam epitaxy, and conducting XPS, HAXPES, AR-XPS, and ToF-SIMS analyses. Within materials physics, he also applies atomic force microscopy, low-energy electron diffraction, and image processing tools. His proficiency in materials physics extends to theoretical simulations, data interpretation, and scientific writing. These materials physics skills enable him to design and execute experiments with precision, ensuring reliable results and impactful publications. By mastering both the technical and theoretical aspects of materials physics, Dr. Tsamo stands out as a versatile and innovative researcher.

Publication Top Notes 

Title : Growth Mechanisms of GaN/GaAs Nanostructures by Droplet Epitaxy Explained by Complementary Experiments and Simulations
Authors : Guy-Vano Tsamo; Alla G. Nastovjak; Nataliya L. Shwartz; Philip E. Hoggan; Christine Robert-Goumet; Alberto Pimpinelli; Matthieu Petit; Alain Ranguis; Emmanuel Gardes; Mamour Sall; Luc Bideux; Guillaume Monier
Journal : The Journal of Physical Chemistry C, Volume 128, Issue 12, March 2024

Conclusion

In conclusion, Dr. Guy-vano Tsamo’s career is a testament to the power and versatility of materials physics. Across education, professional experience, research, awards, and publications, materials physics has been the unifying theme guiding his work. His mastery of materials physics techniques and concepts allows him to tackle complex challenges in nanostructure growth, spectroscopy, and device optimization. The continuous application of materials physics principles ensures that his research not only deepens scientific understanding but also contributes to technological advancement. As materials physics evolves, Dr. Tsamo remains committed to exploring new frontiers, proving that the field holds limitless potential for innovation and societal impact.